Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;13(2):R37.
doi: 10.1186/cc7749. Epub 2009 Mar 16.

Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study

Affiliations

Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study

Helena Brodska et al. Crit Care. 2009.

Abstract

Introduction: Procalcitonin (PCT) and C-reactive protein (CRP) are established markers of infection in the general population. In contrast, several studies reported falsely increased PCT levels in patients receiving T-cell antibodies. We evaluated the validity of these markers in patients scheduled for hemopoietic stem cell transplantation receiving anti-thymocyte globulin (ATG) during conditioning. We also assessed renal and liver functions and their relationship to PCT and CRP changes.

Methods: Twenty-six patients without clinical signs of infection were prospectively studied. ATG was administered in up to three doses over the course of 5 days. PCT, CRP, white blood cell (WBC) count, urea, creatinine, glomerular filtration rate, bilirubin, alanin amino-transferase (ALT), and gamma-glutamyl transferase (GGT) were assessed daily during ATG administration. Pharyngeal, nose, and rectal swabs and urine samples were cultured twice weekly. Blood cultures were obtained if clinical symptoms of infection were present.

Results: Baseline (BL) levels of both PCT and CRP before ATG administration were normal. WBC count decreased after ATG administration (P = 0.005). One day after ATG administration, both PCT and CRP levels increased significantly, returning to BL levels on day 4. Microbiological results were clinically unremarkable. There was no interrelationship between PCT levels and BL markers of renal or liver functions (P > 0.05 for all comparisons). Bilirubin and GGT were increased on days 2 to 5 and ALT was increased on day 3 (P < 0.05 versus BL). No difference in renal functions was observed. Three patients developed bacterial infection on days 7 to 11 with different dynamics of PCT and CRP. There was no association between the number of ATG doses and PCT levels or between the risk of developing infection and previous PCT levels.

Conclusions: ATG triggered a marked early surge in PCT and CRP followed by a steady decrease over the course of 3 days. The dynamics of both PCT and CRP were similar and were not associated with infection. PCT levels were independent of renal and liver functions and were not predictive of further infectious complications. A direct effect of ATG on T lymphocytes could be the underlying mechanism. Hepatotoxic effect could be a contributing factor. Neither PCT nor CRP is a useful marker that can identify infection in patients receiving ATG.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Dynamics of measured parameters during conditioning with anti-thymocyte globulin. Values are presented as mean ± standard deviation. *P < 0.05 versus baseline. ALT, alanin aminotransferase (normal: 0.1 to 0.78 μkat/L); BILI, bilirubin (normal: 2 to 17 μmol/L); CREAT, creatinine (normal: 44 to 104 μmol/L for females and 44 to 110 μmol/L for males); CRP, C-reactive protein (normal: <7 mg/L); Dx, day of conditioning regimen (see Results section for details); GFR, glomerular filtration rate (normal: 1.5 to 2.0 mL/s); GGT, gamma-glutamyl transferase (normal: 0.1 to 0.68 μkat/L); PCT, procalcitonin (normal: < 0.5 μg/L); urea (normal: 2.0 to 6.7 mmol/L for females and 2.8 to 8.0 mmol/L for males); WBC, white blood cell (count) (4.3 to 10.8 × 109/L).
Figure 2
Figure 2
The relationship between the number of anti-thymocyte globulin (ATG) doses and procalcitonin (PCT) values. Black square markers represent the mean, boxes represent standard deviation, and whiskers represent the minimum/maximum for each group. P = 0.16 between groups.

Comment in

  • Procalcitonin: seeking a niche.
    McLean A. McLean A. Crit Care. 2009;13(3):149. doi: 10.1186/cc7799. Epub 2009 May 21. Crit Care. 2009. PMID: 19519928 Free PMC article.

Similar articles

Cited by

References

    1. Castelli GP, Pognani C, Meisner M, Stuani A, Bellomi D, Sgarbi L. Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care. 2004;8:R234–242. doi: 10.1186/cc2877. - DOI - PMC - PubMed
    1. Giamarellou H, Giamarellos-Bourboulis EJ, Repoussis P, Galani L, Anagnostopoulos N, Grecka P, Lubos D, Aoun M, Athanassiou K, Bouza E, Devigili E, Krcmery V, Menichetti F, Panaretou E, Papageorgiou E, Plachouras D. Potential use of procalcitonin as a diagnostic criterion in febrile neutropenia: experience from a multicentre study. Clin Microbiol Infect. 2004;10:628–633. doi: 10.1111/j.1469-0691.2004.00883.x. - DOI - PubMed
    1. Robinson JO, Calandra T, Marchetti O. [Utility of procalcitonin for the diagnosis and the follow-up of infections in febrile neutropenic patients] Rev Med Suisse. 2005;1:878–882. - PubMed
    1. Jimeno A, García-Velasco A, del Val O, González-Billalabeitia E, Hernando S, Hernández R, Sánchez-Muñoz A, López-Martín A, Durán I, Robles L, Cortés-Funes H, Paz-Ares L. Assessment of procalcitonin as a diagnostic and prognostic marker in patients with solid tumors and febrile neutropenia. Cancer. 2004;100:2462–2469. doi: 10.1002/cncr.20275. - DOI - PubMed
    1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874. - PubMed

Publication types

MeSH terms

-