Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2001 Jun;280(6):E898-907.
doi: 10.1152/ajpendo.2001.280.6.E898.

Substrate utilization during endurance exercise in men and women after endurance training

Affiliations
Free article
Clinical Trial

Substrate utilization during endurance exercise in men and women after endurance training

S L Carter et al. Am J Physiol Endocrinol Metab. 2001 Jun.
Free article

Abstract

We investigated the effect of endurance training on whole body substrate, glucose, and glycerol utilization during 90 min of exercise at 60% peak O2 consumption (VO2(peak)) in males and females. Substrate oxidation was determined before and after 7 wk of endurance training on a cycle ergometer, with posttesting performed at the same absolute (ABS, W) and relative (REL, VO2(peak)) intensities. [6,6-2H]glucose and [1,1,2,3,3-2H]glycerol tracers were used to calculate the respective substrate tracee flux. Endurance training resulted in an increase in VO2(peak) for both males and females of 17 and 22%, respectively (P < 0.001). Females demonstrated a lower respiratory exchange ratio (RER) both pretraining and posttraining compared with males during exercise (P < 0.001). Glucose rate of appearance (R(a)) and rate of disappearance (R(d)) were not different between males and females. Glucose metabolic clearance rate (MCR) was lower at 75 and 90 min of exercise for females compared with males (P < 0.05). Glucose R(a) and R(d) were lower during exercise at both ABS and REL posttraining exercise intensities compared with pretraining (P < 0.001). Females had a higher exercise glycerol R(a) and R(d) compared with males both pre- and posttraining (P < 0.001). Glycerol R(a) was not different at either the ABS or REL posttraining exercise intensities compared with pretraining. We concluded that females oxidize proportionately more lipid and less carbohydrate during exercise compared with males both pre- and posttraining, which was cotemporal with a higher glycerol R(a) in females. Furthermore, endurance training resulted in a decrease in glucose flux at both ABS and REL exercise intensities after endurance exercise training.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

-