Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;287(3):G527-32.
doi: 10.1152/ajpgi.00085.2004.

Insulin sensitivity is mediated by the activation of the ACh/NO/cGMP pathway in rat liver

Affiliations
Free article

Insulin sensitivity is mediated by the activation of the ACh/NO/cGMP pathway in rat liver

Maria P Guarino et al. Am J Physiol Gastrointest Liver Physiol. 2004 Sep.
Free article

Abstract

The hepatic parasympathetic nerves and hepatic nitric oxide synthase (NOS) are involved in the secretion of a hepatic insulin sensitizing substance (HISS), which mediates peripheral insulin sensitivity. We tested whether binding of ACh to hepatic muscarinic receptors is an upstream event to the synthesis of nitric oxide (NO), which, along with the activation of hepatic guanylate cyclase (GC), permits HISS release. Male Wistar rats (8-9 wk) were anesthetized with pentobarbital sodium (65 mg/kg). Insulin sensitivity was assessed using a euglycemic clamp [the rapid insulin sensitivity test (RIST)]. HISS inhibition was induced by antagonism of muscarinic receptors (atropine, 3 mg/kg i.v.) or by blockade of NOS [NG-nitro-L-arginine methyl ester (L-NAME), 1 mg/kg intraportally (i.p.v.)]. After the blockade, HISS action was tentatively restored using a NOdonor [3-morpholynosydnonimine (SIN-1), 5-10 mg/kg i.p.v.] or ACh (2.5-5 microg.kg(-1).min(-1) .i.p.v.). SIN-1 (10 mg/kg) reversed the inhibition caused by atropine (RIST postatropine 137.7 +/- 8.3 mg glucose/kg; reversed to 288.3 +/- 15.5 mg glucose/kg, n = 6) and by L-NAME (RIST post-L-NAME 152.2 +/- 21.3 mg glucose/kg; reversed to 321.7 +/- 44.7 mg glucose/kg, n = 5). ACh did not reverse HISS inhibition induced by L-NAME. The role of GC in HISS release was assessed using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 nmol/kg i.p.v.), a GC inhibitor that decreased HISS action (control RIST 237.6 +/- 18.6 mg glucose/kg; RIST post-ODQ 111.7 +/- 6.2 mg glucose/kg, n = 5). We propose that hepatic parasympathetic nerves release ACh, leading to hepatic NO synthesis, which activates GC, triggering HISS action.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-