Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct 1;68(1):26-36.
doi: 10.1016/j.cardiores.2005.06.021.

Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences

Affiliations
Review

Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences

Hua Cai. Cardiovasc Res. .

Abstract

Increased production of reactive oxygen species (ROS) has been implicated in the pathogenesis of cardiovascular diseases. Enzymatic systems such as the mitochondrial respiratory chain, vascular NAD(P)H oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase (eNOS) produce superoxide anion (O2*-) in vascular cells. While some O2(*-) rapidly degrades by reacting with nitric oxide (NO*), the O2*- signal preserved by dismutation into hydrogen peroxide (H2O2) exerts prolonged signaling effects. This review focuses on patterns and mechanisms whereby H2O2 modulates different aspects of endothelial cell function including endothelial cell growth and proliferation, endothelial apoptosis, endothelium-dependent vasorelaxation, endothelial cytoskeletal reorganization and barrier dysfunction, endothelial inflammatory responses, and endothelium-regulated vascular remodeling. These modulations of endothelial cell function may at least partially underlie H2O2 contribution to the development of vascular disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-