Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct;7(7):755-809.
doi: 10.2174/138920006778520552.

Metabolism of green tea catechins: an overview

Affiliations
Review

Metabolism of green tea catechins: an overview

Wan Yong Feng. Curr Drug Metab. 2006 Oct.

Abstract

Green tea is one of the most popular beverages worldwide. Its major components include (-)-epicatechin ((-)-EC), (-)-epicatechin-3-gallate (ECG) (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG). It has demonstrated strong antioxidative, anti-inflammatory and anti-cancerous properties and attracted a great deal of interest over last several years. However, there is some discrepancy between the results from human pidemiological studies and cultured cell and animal models. Two reasons for its limited in vivo activities have been considered: metabolism and bioavailability. Recent studies have demonstrated that green tea catechins undergo methylation, glucuronidation and sulfation in in vitro systems and in animals and in humans. It has been also found that efflux transporters Pgp, MRP1 and MRP2 play roles in the absorption and excretion of green tea catechins. Several processes including intestinal metabolism, microbial metabolism, hepatic metabolism and chemical degradation have been found to be involved in the fate of green tea, and to be responsible for its low availability in animals, and most likely also in humans. Pharmacokinetics, absorption, distribution, drug metabolism and excretion properties of green tea provide a better understanding for its in vivo activities. In this article, drug metabolism and microbial metabolism of green tea catechins in in vitro systems and in animals and in humans will be reviewed. It also covers the factors affecting their biotransformation and bioavailability: drug-drug inhibitory and inductive interactions of phase I and phase II enzymes, inhibition of non-drug-metabolizing enzymes, transporters, chemical instability, epimerization and interindividual variability.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

-