Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar 1;37(5):837-41.
doi: 10.1016/0006-2952(88)90169-4.

Flavonoids are scavengers of superoxide anions

Affiliations

Flavonoids are scavengers of superoxide anions

J Robak et al. Biochem Pharmacol. .

Abstract

Seven flavonoids and three non-flavonoid antioxidants, i.e. butylated hydroxyanisole, chlorpromazine and BW 755 C, were studied as potential scavengers of oxygen free radicals. Superoxide anions were generated enzymatically in a xanthine-xanthine oxidase system and non-enzymatically in a phenazine methosulphate-NADH system, and assayed by reduction of nitro blue tetrazolium. The generation of malonaldehyde (MDA) by the ascorbate-stimulated air-oxidised boiled rat liver microsomes was considered as an index of the non-enzymatic formation of hydroxyl radicals. Flavonoids but not non-flavonoid antioxidants lowered the concentration of detectable superoxide anions in both enzymic and non-enzymic systems which generated these SOD-sensitive radicals. The most effective inhibitors of superoxide anions were quercetin, myricetin and rutin. Four out of seven investigated flavonoids seemed also to suppress the activity of xanthine oxidase as measured by a decrease in uric acid biosynthesis. All ten investigated compounds inhibited the MDA formation by rat liver microsomes. Non-flavonoid antioxidants were more potent MDA inhibitors than flavonoids. It is concluded that antioxidant properties of flavonoids are effected mainly via scavenging of superoxide anions whereas non-flavonoid antioxidants act on further links of free radical chain reactions, most likely by scavenging of hydroxyl radicals.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

-