Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Br J Ophthalmol. 2001 Jun; 85(6): 746–753.
PMCID: PMC1723990
PMID: 11371498

Advanced glycation: an important pathological event in diabetic and age related ocular disease

Full Text

The Full Text of this article is available as a PDF (199K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed] [Google Scholar]
  • Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P. Alzheimer's disease--synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm (Vienna) 1998;105(4-5):439–461. [PubMed] [Google Scholar]
  • Monnier VM, Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981 Jan 30;211(4481):491–493. [PubMed] [Google Scholar]
  • Sell DR, Monnier VM. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990 Feb;85(2):380–384. [PMC free article] [PubMed] [Google Scholar]
  • Jiaan DB, Seftel AD, Fogarty J, Hampel N, Cruz W, Pomerantz J, Zuik M, Monnier VM. Age-related increase in an advanced glycation end product in penile tissue. World J Urol. 1995;13(6):369–375. [PubMed] [Google Scholar]
  • Seftel AD, Vaziri ND, Ni Z, Razmjouei K, Fogarty J, Hampel N, Polak J, Wang RZ, Ferguson K, Block C, et al. Advanced glycation end products in human penis: elevation in diabetic tissue, site of deposition, and possible effect through iNOS or eNOS. Urology. 1997 Dec;50(6):1016–1026. [PubMed] [Google Scholar]
  • Matsuse T, Ohga E, Teramoto S, Fukayama M, Nagai R, Horiuchi S, Ouchi Y. Immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J Clin Pathol. 1998 Jul;51(7):515–519. [PMC free article] [PubMed] [Google Scholar]
  • Stitt AW, Bucala R, Vlassara H. Atherogenesis and advanced glycation: promotion, progression, and prevention. Ann N Y Acad Sci. 1997 Apr 15;811:115–129. [PubMed] [Google Scholar]
  • Stitt AW, He C, Friedman S, Scher L, Rossi P, Ong L, Founds H, Li YM, Bucala R, Vlassara H. Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol Med. 1997 Sep;3(9):617–627. [PMC free article] [PubMed] [Google Scholar]
  • Takagi Y, Kashiwagi A, Tanaka Y, Asahina T, Kikkawa R, Shigeta Y. Significance of fructose-induced protein oxidation and formation of advanced glycation end product. J Diabetes Complications. 1995 Apr-Jun;9(2):87–91. [PubMed] [Google Scholar]
  • Koenig RJ, Blobstein SH, Cerami A. Structure of carbohydrate of hemoglobin AIc. J Biol Chem. 1977 May 10;252(9):2992–2997. [PubMed] [Google Scholar]
  • Cerami A, Stevens VJ, Monnier VM. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus. Metabolism. 1979 Apr;28(4 Suppl 1):431–437. [PubMed] [Google Scholar]
  • Vishwanath V, Frank KE, Elmets CA, Dauchot PJ, Monnier VM. Glycation of skin collagen in type I diabetes mellitus. Correlation with long-term complications. Diabetes. 1986 Aug;35(8):916–921. [PubMed] [Google Scholar]
  • Wells-Knecht MC, Thorpe SR, Baynes JW. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. [PubMed] [Google Scholar]
  • Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999 Nov 15;344(Pt 1):109–116. [PMC free article] [PubMed] [Google Scholar]
  • Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990 Jul 1;269(1):1–11. [PMC free article] [PubMed] [Google Scholar]
  • Njoroge FG, Sayre LM, Monnier VM. Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydr Res. 1987 Sep 15;167:211–220. [PubMed] [Google Scholar]
  • Miyata S, Monnier V. Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J Clin Invest. 1992 Apr;89(4):1102–1112. [PMC free article] [PubMed] [Google Scholar]
  • Obayashi H, Nakano K, Shigeta H, Yamaguchi M, Yoshimori K, Fukui M, Fujii M, Kitagawa Y, Nakamura N, Nakamura K, et al. Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem Biophys Res Commun. 1996 Sep 4;226(1):37–41. [PubMed] [Google Scholar]
  • Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, Monnier VM. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev. 1991 Dec;7(4):239–251. [PubMed] [Google Scholar]
  • Portero-Otín M, Pamplona R, Bellmunt MJ, Bergua M, Nagaraj RH, Prat J. Urinary pyrraline as a biochemical marker of non-oxidative Maillard reactions in vivo. Life Sci. 1997;60(4-5):279–287. [PubMed] [Google Scholar]
  • Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, Lee A, Al-Abed Y, Vlassara H, Bucala R, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13915–13920. [PMC free article] [PubMed] [Google Scholar]
  • Nicholl ID, Stitt AW, Moore JE, Ritchie AJ, Archer DB, Bucala R. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol Med. 1998 Sep;4(9):594–601. [PMC free article] [PubMed] [Google Scholar]
  • Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6474–6479. [PMC free article] [PubMed] [Google Scholar]
  • He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999 Jun;48(6):1308–1315. [PubMed] [Google Scholar]
  • Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb. 1994 Oct;14(10):1521–1528. [PubMed] [Google Scholar]
  • Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H. Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11047–11052. [PMC free article] [PubMed] [Google Scholar]
  • Stitt AW, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem Biophys Res Commun. 1999 Mar 24;256(3):549–556. [PubMed] [Google Scholar]
  • Horiuchi S, Higashi T, Ikeda K, Saishoji T, Jinnouchi Y, Sano H, Shibayama R, Sakamoto T, Araki N. Advanced glycation end products and their recognition by macrophage and macrophage-derived cells. Diabetes. 1996 Jul;45 (Suppl 3):S73–S76. [PubMed] [Google Scholar]
  • Menè P, Pascale C, Teti A, Bernardini S, Cinotti GA, Pugliese F. Effects of advanced glycation end products on cytosolic Ca2+ signaling of cultured human mesangial cells. J Am Soc Nephrol. 1999 Jul;10(7):1478–1486. [PubMed] [Google Scholar]
  • Scivittaro V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am J Physiol Renal Physiol. 2000 Apr;278(4):F676–F683. [PubMed] [Google Scholar]
  • Huang JS, Guh JY, Hung WC, Yang ML, Lai YH, Chen HC, Chuang LY. Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells. Biochem J. 1999 Aug 15;342(Pt 1):231–238. [PMC free article] [PubMed] [Google Scholar]
  • Deora AA, Win T, Vanhaesebroeck B, Lander HM. A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3'-kinase to Ras by redox stress. J Biol Chem. 1998 Nov 6;273(45):29923–29928. [PubMed] [Google Scholar]
  • Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem. 1997 Jul 11;272(28):17810–17814. [PubMed] [Google Scholar]
  • Simm A, Münch G, Seif F, Schenk O, Heidland A, Richter H, Vamvakas S, Schinzel R. Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett. 1997 Jun 30;410(2-3):481–484. [PubMed] [Google Scholar]
  • Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12043–12047. [PMC free article] [PubMed] [Google Scholar]
  • Yang CW, Vlassara H, Peten EP, He CJ, Striker GE, Striker LJ. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9436–9440. [PMC free article] [PubMed] [Google Scholar]
  • Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11704–11708. [PMC free article] [PubMed] [Google Scholar]
  • Bucala R, Model P, Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci U S A. 1984 Jan;81(1):105–109. [PMC free article] [PubMed] [Google Scholar]
  • Ledesma MD, Bonay P, Colaço C, Avila J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem. 1994 Aug 26;269(34):21614–21619. [PubMed] [Google Scholar]
  • Howard EW, Benton R, Ahern-Moore J, Tomasek JJ. Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res. 1996 Oct 10;228(1):132–137. [PubMed] [Google Scholar]
  • Paget C, Lecomte M, Ruggiero D, Wiernsperger N, Lagarde M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radic Biol Med. 1998 Jul 1;25(1):121–129. [PubMed] [Google Scholar]
  • Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994 Jul;94(1):110–117. [PMC free article] [PubMed] [Google Scholar]
  • Abdel-Wahab YH, O'Harte FP, Ratcliff H, McClenaghan NH, Barnett CR, Flatt PR. Glycation of insulin in the islets of Langerhans of normal and diabetic animals. Diabetes. 1996 Nov;45(11):1489–1496. [PubMed] [Google Scholar]
  • Delcourt C, Cristol JP, Tessier F, Léger CL, Michel F, Papoz L. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study. Pathologies Oculaires Liées à l'Age. Am J Epidemiol. 2000 Mar 1;151(5):497–504. [PubMed] [Google Scholar]
  • Taylor HR. Epidemiology of age-related cataract. Eye (Lond) 1999 Jun;13(Pt 3B):445–448. [PubMed] [Google Scholar]
  • Garner B, Davies MJ, Truscott RJ. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Exp Eye Res. 2000 Jan;70(1):81–88. [PubMed] [Google Scholar]
  • Dillon J. UV-B as a pro-aging and pro-cataract factor. Doc Ophthalmol. 1994;88(3-4):339–344. [PubMed] [Google Scholar]
  • Stevens VJ, Rouzer CA, Monnier VM, Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. [PMC free article] [PubMed] [Google Scholar]
  • Matsumoto K, Ikeda K, Horiuchi S, Zhao H, Abraham EC. Immunochemical evidence for increased formation of advanced glycation end products and inhibition by aminoguanidine in diabetic rat lenses. Biochem Biophys Res Commun. 1997 Dec 18;241(2):352–354. [PubMed] [Google Scholar]
  • Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ. The ageing lens. Ophthalmologica. 2000 Jan-Feb;214(1):86–104. [PubMed] [Google Scholar]
  • Shamsi FA, Sharkey E, Creighton D, Nagaraj RH. Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp Eye Res. 2000 Mar;70(3):369–380. [PubMed] [Google Scholar]
  • Chellan P, Nagaraj RH. Protein crosslinking by the Maillard reaction: dicarbonyl-derived imidazolium crosslinks in aging and diabetes. Arch Biochem Biophys. 1999 Aug 1;368(1):98–104. [PubMed] [Google Scholar]
  • Derham BK, Harding JJ. Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res. 1999 Jul;18(4):463–509. [PubMed] [Google Scholar]
  • Awasthi YC, Miller SP, Arya DV, Srivastava SK. The effect of copper on human and bovine lens and on human cultured lens epithelium enzymes. Exp Eye Res. 1975 Sep;21(3):251–257. [PubMed] [Google Scholar]
  • Lin J. Pathophysiology of cataracts: copper ion and peroxidation in diabetics. Jpn J Ophthalmol. 1997 May-Jun;41(3):130–137. [PubMed] [Google Scholar]
  • Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Invest Ophthalmol Vis Sci. 2000 May;41(6):1473–1481. [PubMed] [Google Scholar]
  • Frei B, Forte TM, Ames BN, Cross CE. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J. 1991 Jul 1;277(Pt 1):133–138. [PMC free article] [PubMed] [Google Scholar]
  • Christen WG, Manson JE, Seddon JM, Glynn RJ, Buring JE, Rosner B, Hennekens CH. A prospective study of cigarette smoking and risk of cataract in men. JAMA. 1992 Aug 26;268(8):989–993. [PubMed] [Google Scholar]
  • Schultz RO, Van Horn DL, Peters MA, Klewin KM, Schutten WH. Diabetic keratopathy. Trans Am Ophthalmol Soc. 1981;79:180–199. [PMC free article] [PubMed] [Google Scholar]
  • Sady C, Khosrof S, Nagaraj R. Advanced Maillard reaction and crosslinking of corneal collagen in diabetes. Biochem Biophys Res Commun. 1995 Sep 25;214(3):793–797. [PubMed] [Google Scholar]
  • Kaji Y, Usui T, Oshika T, Matsubara M, Yamashita H, Araie M, Murata T, Ishibashi T, Nagai R, Horiuchi S, et al. Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):362–368. [PubMed] [Google Scholar]
  • Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM. Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta. 1992 Mar 20;1138(3):222–228. [PubMed] [Google Scholar]
  • Malik NS, Meek KM. The inhibition of sugar-induced structural alterations in collagen by aspirin and other compounds. Biochem Biophys Res Commun. 1994 Mar 15;199(2):683–686. [PubMed] [Google Scholar]
  • Malik NS, Meek KM. Vitamins and analgesics in the prevention of collagen ageing. Age Ageing. 1996 Jul;25(4):279–284. [PubMed] [Google Scholar]
  • Spoerl E, Seiler T. Techniques for stiffening the cornea. J Refract Surg. 1999 Nov-Dec;15(6):711–713. [PubMed] [Google Scholar]
  • Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000 May;19(3):323–344. [PubMed] [Google Scholar]
  • Sebag J, Buckingham B, Charles MA, Reiser K. Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol. 1992 Oct;110(10):1472–1476. [PubMed] [Google Scholar]
  • Sebag J. Diabetic vitreopathy. Ophthalmology. 1996 Feb;103(2):205–206. [PubMed] [Google Scholar]
  • Stitt AW, Moore JE, Sharkey JA, Murphy G, Simpson DA, Bucala R, Vlassara H, Archer DB. Advanced glycation end products in vitreous: Structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci. 1998 Dec;39(13):2517–2523. [PubMed] [Google Scholar]
  • Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225(2):89–93. [PubMed] [Google Scholar]
  • Archer DB. Bowman Lecture 1998. Diabetic retinopathy: some cellular, molecular and therapeutic considerations. Eye (Lond) 1999 Aug;13(Pt 4):497–523. [PubMed] [Google Scholar]
  • Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol. 1997 Feb;150(2):523–531. [PMC free article] [PubMed] [Google Scholar]
  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. [PubMed] [Google Scholar]
  • Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG, Brownlee M, Schleicher ED. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia. 1999 Jun;42(6):728–736. [PubMed] [Google Scholar]
  • Schalkwijk CG, Ligtvoet N, Twaalfhoven H, Jager A, Blaauwgeers HG, Schlingemann RO, Tarnow L, Parving HH, Stehouwer CD, van Hinsbergh VW. Amadori albumin in type 1 diabetic patients: correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes. 1999 Dec;48(12):2446–2453. [PubMed] [Google Scholar]
  • Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia. 1997 Jul;40(7):764–769. [PubMed] [Google Scholar]
  • Hammes HP, Wellensiek B, Klöting I, Sickel E, Bretzel RG, Brownlee M. The relationship of glycaemic level to advanced glycation end-product (AGE) accumulation and retinal pathology in the spontaneous diabetic hamster. Diabetologia. 1998 Feb;41(2):165–170. [PubMed] [Google Scholar]
  • Clements RS, Jr, Robison WG, Jr, Cohen MP. Anti-glycated albumin therapy ameliorates early retinal microvascular pathology in db/db mice. J Diabetes Complications. 1998 Jan-Feb;12(1):28–33. [PubMed] [Google Scholar]
  • Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11555–11558. [PMC free article] [PubMed] [Google Scholar]
  • Hammes HP, Ali SS, Uhlmann M, Weiss A, Federlin K, Geisen K, Brownlee M. Aminoguanidine does not inhibit the initial phase of experimental diabetic retinopathy in rats. Diabetologia. 1995 Mar;38(3):269–273. [PubMed] [Google Scholar]
  • Hammes HP, Strödter D, Weiss A, Bretzel RG, Federlin K, Brownlee M. Secondary intervention with aminoguanidine retards the progression of diabetic retinopathy in the rat model. Diabetologia. 1995 Jun;38(6):656–660. [PubMed] [Google Scholar]
  • Stitt AW, Bhaduri T, McMullen CB, Gardiner TA, Archer DB. Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun. 2000 Jun;3(6):380–388. [PubMed] [Google Scholar]
  • Ono Y, Aoki S, Ohnishi K, Yasuda T, Kawano K, Tsukada Y. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res Clin Pract. 1998 Aug;41(2):131–137. [PubMed] [Google Scholar]
  • Chiarelli F, de Martino M, Mezzetti A, Catino M, Morgese G, Cuccurullo F, Verrotti A. Advanced glycation end products in children and adolescents with diabetes: relation to glycemic control and early microvascular complications. J Pediatr. 1999 Apr;134(4):486–491. [PubMed] [Google Scholar]
  • Chakravarthy U, Hayes RG, Stitt AW, McAuley E, Archer DB. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes. 1998 Jun;47(6):945–952. [PubMed] [Google Scholar]
  • Yamagishi S, Fujimori H, Yonekura H, Tanaka N, Yamamoto H. Advanced glycation endproducts accelerate calcification in microvascular pericytes. Biochem Biophys Res Commun. 1999 May 10;258(2):353–357. [PubMed] [Google Scholar]
  • Ruggiero-Lopez D, Rellier N, Lecomte M, Lagarde M, Wiernsperger N. Growth modulation of retinal microvascular cells by early and advanced glycation products. Diabetes Res Clin Pract. 1997 Jan;34(3):135–142. [PubMed] [Google Scholar]
  • Chibber R, Molinatti PA, Rosatto N, Lambourne B, Kohner EM. Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia. 1997 Feb;40(2):156–164. [PubMed] [Google Scholar]
  • Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest. 1998 Mar 15;101(6):1219–1224. [PMC free article] [PubMed] [Google Scholar]
  • Hirata C, Nakano K, Nakamura N, Kitagawa Y, Shigeta H, Hasegawa G, Ogata M, Ikeda T, Sawa H, Nakamura K, et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun. 1997 Jul 30;236(3):712–715. [PubMed] [Google Scholar]
  • Yamagishi S i, Yonekura H, Yamamoto Y, Katsuno K, Sato F, Mita I, Ooka H, Satozawa N, Kawakami T, Nomura M, et al. Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J Biol Chem. 1997 Mar 28;272(13):8723–8730. [PubMed] [Google Scholar]
  • Moore DJ, Hussain AA, Marshall J. Age-related variation in the hydraulic conductivity of Bruch's membrane. Invest Ophthalmol Vis Sci. 1995 Jun;36(7):1290–1297. [PubMed] [Google Scholar]
  • Sarks JP, Sarks SH, Killingsworth MC. Evolution of soft drusen in age-related macular degeneration. Eye (Lond) 1994;8(Pt 3):269–283. [PubMed] [Google Scholar]
  • Mullins RF, Hageman GS. Human ocular drusen possess novel core domains with a distinct carbohydrate composition. J Histochem Cytochem. 1999 Dec;47(12):1533–1540. [PubMed] [Google Scholar]
  • Boulton M, Marshall J. Effects of increasing numbers of phagocytic inclusions on human retinal pigment epithelial cells in culture: a model for aging. Br J Ophthalmol. 1986 Nov;70(11):808–815. [PMC free article] [PubMed] [Google Scholar]
  • Pauleikhoff D, Barondes MJ, Minassian D, Chisholm IH, Bird AC. Drusen as risk factors in age-related macular disease. Am J Ophthalmol. 1990 Jan 15;109(1):38–43. [PubMed] [Google Scholar]
  • Boulton M, Moriarty P, Jarvis-Evans J, Marcyniuk B. Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol. 1994 Feb;78(2):125–129. [PMC free article] [PubMed] [Google Scholar]
  • Rakoczy PE, Baines M, Kennedy CJ, Constable IJ. Correlation between autofluorescent debris accumulation and the presence of partially processed forms of cathepsin D in cultured retinal pigment epithelial cells challenged with rod outer segments. Exp Eye Res. 1996 Aug;63(2):159–167. [PubMed] [Google Scholar]
  • Ishibashi T, Sorgente N, Patterson R, Ryan SJ. Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci. 1986 Feb;27(2):184–193. [PubMed] [Google Scholar]
  • Feeney-Burns L, Gao CL, Tidwell M. Lysosomal enzyme cytochemistry of human RPE, Bruch's membrane and drusen. Invest Ophthalmol Vis Sci. 1987 Jul;28(7):1138–1147. [PubMed] [Google Scholar]
  • Hammes HP, Hoerauf H, Alt A, Schleicher E, Clausen JT, Bretzel RG, Laqua H. N(epsilon)(carboxymethyl)lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1999 Jul;40(8):1855–1859. [PubMed] [Google Scholar]
  • Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM. Increase in the advanced glycation end product pentosidine in Bruch's membrane with age. Invest Ophthalmol Vis Sci. 1999 Mar;40(3):775–779. [PubMed] [Google Scholar]
  • Handa JT, Reiser KM, Matsunaga H, Hjelmeland LM. The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells. Exp Eye Res. 1998 Apr;66(4):411–419. [PubMed] [Google Scholar]
  • Hageman GS, Mullins RF, Russell SR, Johnson LV, Anderson DH. Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB J. 1999 Mar;13(3):477–484. [PubMed] [Google Scholar]
  • Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 2000 May;14(7):835–846. [PubMed] [Google Scholar]
  • Li YM, Dickson DW. Enhanced binding of advanced glycation endproducts (AGE) by the ApoE4 isoform links the mechanism of plaque deposition in Alzheimer's disease. Neurosci Lett. 1997 May 2;226(3):155–158. [PubMed] [Google Scholar]
  • Tabaton M, Perry G, Smith M, Vitek M, Angelini G, Dapino D, Garibaldi S, Zaccheo D, Odetti P. Is amyloid beta-protein glycated in Alzheimer's disease? Neuroreport. 1997 Mar 3;8(4):907–909. [PubMed] [Google Scholar]
  • Hammes HP, Weiss A, Hess S, Araki N, Horiuchi S, Brownlee M, Preissner KT. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab Invest. 1996 Sep;75(3):325–338. [PubMed] [Google Scholar]
  • Okubo A, Rosa RH, Jr, Bunce CV, Alexander RA, Fan JT, Bird AC, Luthert PJ. The relationships of age changes in retinal pigment epithelium and Bruch's membrane. Invest Ophthalmol Vis Sci. 1999 Feb;40(2):443–449. [PubMed] [Google Scholar]
  • Kasper M, Schinzel R, Niwa T, Münch G, Witt M, Fehrenbach H, Wilsch-Bräuninger M, Pehlke K, Hofer A, Funk RH. Experimental induction of AGEs in fetal L132 lung cells changes the level of intracellular cathepsin D. Biochem Biophys Res Commun. 1999 Jul 22;261(1):175–182. [PubMed] [Google Scholar]
  • Sebeková K, Schinzel R, Ling H, Simm A, Xiang G, Gekle M, Münch G, Vamvakas S, Heidland A. Advanced glycated albumin impairs protein degradation in the kidney proximal tubules cell line LLC-PK1. Cell Mol Biol (Noisy-le-grand) 1998 Nov;44(7):1051–1060. [PubMed] [Google Scholar]
  • Miyata S, Liu BF, Shoda H, Ohara T, Yamada H, Suzuki K, Kasuga M. Accumulation of pyrraline-modified albumin in phagocytes due to reduced degradation by lysosomal enzymes. J Biol Chem. 1997 Feb 14;272(7):4037–4042. [PubMed] [Google Scholar]
  • Boulton M, McKechnie NM, Breda J, Bayly M, Marshall J. The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci. 1989 Jan;30(1):82–89. [PubMed] [Google Scholar]
  • Yin D. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med. 1996;21(6):871–888. [PubMed] [Google Scholar]
  • Leske MC. The epidemiology of open-angle glaucoma: a review. Am J Epidemiol. 1983 Aug;118(2):166–191. [PubMed] [Google Scholar]
  • Albon J, Karwatowski WS, Avery N, Easty DL, Duance VC. Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol. 1995 Apr;79(4):368–375. [PMC free article] [PubMed] [Google Scholar]
  • Ino-ue M, Ohgiya N, Yamamoto M. Effect of aminoguanidine on optic nerve involvement in experimental diabetic rats. Brain Res. 1998 Aug 3;800(2):319–322. [PubMed] [Google Scholar]
  • Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science. 1986 Jun 27;232(4758):1629–1632. [PubMed] [Google Scholar]
  • Panagiotopoulos S, O'Brien RC, Bucala R, Cooper ME, Jerums G. Aminoguanidine has an anti-atherogenic effect in the cholesterol-fed rabbit. Atherosclerosis. 1998 Jan;136(1):125–131. [PubMed] [Google Scholar]
  • Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes. 1991 Oct;40(10):1328–1334. [PubMed] [Google Scholar]
  • Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 1992 Jan;41(1):26–29. [PubMed] [Google Scholar]
  • Cho HK, Kozu H, Peyman GA, Parry GJ, Khoobehi B. The effect of aminoguanidine on the blood-retinal barrier in streptozocin-induced diabetic rats. Ophthalmic Surg. 1991 Jan;22(1):44–47. [PubMed] [Google Scholar]
  • Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis. 1995 Dec;26(6):875–888. [PubMed] [Google Scholar]
  • Jianmongkol S, Vuletich JL, Bender AT, Demady DR, Osawa Y. Aminoguanidine-mediated inactivation and alteration of neuronal nitric-oxide synthase. J Biol Chem. 2000 May 5;275(18):13370–13376. [PubMed] [Google Scholar]
  • Nakamura S, Makita Z, Ishikawa S, Yasumura K, Fujii W, Yanagisawa K, Kawata T, Koike T. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes. 1997 May;46(5):895–899. [PubMed] [Google Scholar]
  • Jianmongkol S, Vuletich JL, Bender AT, Demady DR, Osawa Y. Aminoguanidine-mediated inactivation and alteration of neuronal nitric-oxide synthase. J Biol Chem. 2000 May 5;275(18):13370–13376. [PubMed] [Google Scholar]
  • Soulis T, Sastra S, Thallas V, Mortensen SB, Wilken M, Clausen JT, Bjerrum OJ, Petersen H, Lau J, Jerums G, et al. A novel inhibitor of advanced glycation end-product formation inhibits mesenteric vascular hypertrophy in experimental diabetes. Diabetologia. 1999 Apr;42(4):472–479. [PubMed] [Google Scholar]
  • Mitsuhashi T, Li YM, Fishbane S, Vlassara H. Depletion of reactive advanced glycation endproducts from diabetic uremic sera using a lysozyme-linked matrix. J Clin Invest. 1997 Aug 15;100(4):847–854. [PMC free article] [PubMed] [Google Scholar]
  • Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, et al. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996 Jul 18;382(6588):275–278. [PubMed] [Google Scholar]
  • Cooper ME, Thallas V, Forbes J, Scalbert E, Sastra S, Darby I, Soulis T. The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia. 2000 May;43(5):660–664. [PubMed] [Google Scholar]
  • Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, Vasan S, Egan JJ, Ulrich P, Cerami A, et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4630–4634. [PMC free article] [PubMed] [Google Scholar]
  • Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, et al. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2809–2813. [PMC free article] [PubMed] [Google Scholar]

Figures and Tables

An external file that holds a picture, illustration, etc.
Object name is 00519.f1.jpg

Schematic diagram illustrating the course of AGE formation on a hypothetical fibrilar protein. Open chain sugars or glycolytic intermediates (⬠) react with amino groups (R) to form Schiff bases and Amadori products (A) and eventually AGEs. Glucose may take several weeks to culminate in AGE formation leading to irreversible crosslink formation between protein fibrils or oxidative products. Reactive glycolytic intermediates such as methylglyoxal or 3-deoxyglucosone take much less time to form AGEs. Such AGE crosslinks can have a serious influence on protein structure and function.    

An external file that holds a picture, illustration, etc.
Object name is 00519.f2.jpg

Structures of advanced glycation end products.

An external file that holds a picture, illustration, etc.
Object name is 00519.f3.jpg

AGEs accumulate at high levels in the lens and coronary arteries of smokers. (A) The cataractous lenses of smokers (S) and non-smokers (NS) were removed, the protein extracted and quantified for AGE immunoreactivity using a competitive AGE-ELISA. AGE levels were significantly higher in the lenses of smokers (*p<0.0007) (Nicholl et al28). (B) AGE immunoreactivity in the vascular walls of coronary arteries from smokers, non-smokers, and smokers with diabetes. AGEs deposited at higher levels in patients with a history of smoking tobacco products. Significantly, patients who had diabetes and also smoked had supraelevated levels in their coronary arteries (*p<0.015; **p<0.001).

An external file that holds a picture, illustration, etc.
Object name is 00519.f4.jpg

AGE immunoreactivity in diabetic and aged rats. (A) Trypsin digest of retinal vascular tree from an 8 month diabetic rat. AGE immunoreactivity is marked in the arterioles and capillaries. The pericytes of the retinal capillary beds are hyperfluorescent indicating accumulation of AGEs (arrows). (B) AGE immunoreactivity in the retinal vasculature of a 28 month old, non-diabetic rat. The immunofluorescence pattern is different from that observed in the diabetic retina (A) with AGE localisation appearing confined to the vascular basement membranes of arteries, arterioles and, to a lesser extent, the capillaries. Note the bright fluorescence at arteriolar sphincters (arrow).

An external file that holds a picture, illustration, etc.
Object name is 00519.f5.jpg

AGEs and AGE receptor accumulation in lysosomes. (A) AGE receptor component (AGE-R1) (see Stitt et al33) immunoreactivity in a human RPE cell which was exposed to AGE albumin for 4 days before fixation. Note the hyperfluorescent areas in a perinuclear position—a distribution pattern which is indicative of RPE lysosomal compartments. (B) AGE immunoreactivity in a glomerular epithelial cell from a diabetic dog. Note the high density of gold particles in the lysosomes which indicate AGE accumulation in these organelles.


Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

-