Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biophys J. 1983 Jul; 43(1): 91–101.
PMCID: PMC1329272
PMID: 6688367

Galactocerebroside-phospholipid interactions in bilayer membranes.

Abstract

Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the interaction of hydrated N-palmitoylgalactosylsphingosine (NPGS) and dipalmitoylphosphatidylcholine (DPPC). For mixtures containing less than 23 mol% NPGS, complete miscibility of NPGS into hydrated DPPC bilayers is observed in both the bilayer gel and liquid-crystal phases. X-ray diffraction data demonstrate insignificant differences in the DPPC-bilayer gel-phase parameters on incorporation of up to 23 mol% NPGS. At greater than 23 mol% NPGS, additional high-temperature transitions occur, indicating phase separation of cerebroside. For these cerebroside concentrations, at 20 degrees C, x-ray diffraction shows two lamellar phases, hydrated DPPC-NPGS gel bilayers (d = 64 A) containing 23 mol% NPGS, and NPGS "crystal" bilayers (d = 55 A). On heating to temperatures greater than 45 degrees C, the mixed DPPC-NPGS bilayer phase undergoes chain melting, and on further increasing the temperature progressively more NPGS is incorporated into the liquid-crystal DPPC-NPGS bilayer phase. At temperatures greater than 82 degrees C (the transition temperature of hydrated NPGS), complete lipid miscibility is observed at all DPPC/NPGS molar ratios.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Rumsby MG. Organization and structure in central-nerve myelin. Biochem Soc Trans. 1978;6(2):448–462. [PubMed] [Google Scholar]
  • Bologa-Sandru L, Zalc B, Herschkowitz N, Baumann N. Oligodendrocytes of jimpy mice express galactosylceramide: an immunofluorescence study on brain sections and dissociated brain cell cultures. Brain Res. 1981 Nov 30;225(2):425–430. [PubMed] [Google Scholar]
  • Reiss-Husson F. Structure des phases liquide-cristallines de différents phospholipides, monoglycérides, sphingolipides, anhydres ou en présence d'eau. J Mol Biol. 1967 May 14;25(3):363–382. [PubMed] [Google Scholar]
  • Larsson D, Karlsson DA. Molecular arrangements in glycosphingolipids. Chem Phys Lipids. 1972 Mar;8(2):152–179. [PubMed] [Google Scholar]
  • Fernandez-Bermudez S, Loboda-Cacković J, Cacković H, Hosemann R. Structure of cerebrosides I. Phrenosine at 23 degrees C and 66 degrees C. Z Naturforsch C. 1977 May-Jun;32(5-6):362–374. [PubMed] [Google Scholar]
  • Hosemann R, Loboda-Cacković J, Cacković H, Fernandez-Bermúdez S, Baltá-Calleja FJ. Structure of cerebrosides. II. Small angle X-ray diffraction study of cerasine. Z Naturforsch C. 1979 Dec;34(12):1121–1124. [PubMed] [Google Scholar]
  • Ruocco MJ, Atkinson D, Small DM, Skarjune RP, Oldfield E, Shipley GG. X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoylgalactosylsphingosine (cerebroside). Biochemistry. 1981 Oct 13;20(21):5957–5966. [PubMed] [Google Scholar]
  • Clowes AW, Cherry RJ, Chapman D. Physical properties of lecithin-cerebroside bilayers. Biochim Biophys Acta. 1971 Oct 12;249(1):301–317. [PubMed] [Google Scholar]
  • Bunow MR. Two gel states of cerebrosides. Calorimetric and Raman spectroscopic evidence. Biochim Biophys Acta. 1979 Sep 28;574(3):542–546. [PubMed] [Google Scholar]
  • Freire E, Bach D, Correa-Freire M, Miller I, Barenholz Y. Calorimetric investigation of the complex phase behavior of glucocerebroside dispersions. Biochemistry. 1980 Aug 5;19(16):3662–3665. [PubMed] [Google Scholar]
  • Curatolo W. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry. 1982 Apr 13;21(8):1761–1764. [PubMed] [Google Scholar]
  • Ladbrooke BD, Jenkinson TJ, Kamat VB, Chapman D. Physical studies of myelin. I. Thermal analysis. Biochim Biophys Acta. 1968 Sep 2;164(1):101–109. [PubMed] [Google Scholar]
  • Correa-Freire MC, Freire E, Barenholz Y, Biltonen RL, Thompson TE. Thermotropic behavior of monoglucocerebroside--dipalmitoylphosphatidylcholine multilamellar liposomes. Biochemistry. 1979 Feb 6;18(3):442–445. [PubMed] [Google Scholar]
  • Bunow MR, Levin IW. Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy. Biophys J. 1980 Dec;32(3):1007–1021. [PMC free article] [PubMed] [Google Scholar]
  • Skarjune R, Oldfield E. Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance investigation of deuterium-labelled N-hexadeconoylgalactosylceramides (cerebrosides). Biochim Biophys Acta. 1979 Sep 21;556(2):208–218. [PubMed] [Google Scholar]
  • Tardieu A, Luzzati V, Reman FC. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. [PubMed] [Google Scholar]
  • Levine YK, Bailey AI, Wilkins MH. Multilayers of phospholipid bimolecular leaflets. Nature. 1968 Nov 9;220(5167):577–578. [PubMed] [Google Scholar]
  • McIntosh TJ. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978 Oct 19;513(1):43–58. [PubMed] [Google Scholar]
  • Skarjune R, Oldfield E. Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance studies of N-palmitoylglucosylceramide (cerebroside) head group structure. Biochemistry. 1982 Jun 22;21(13):3154–3160. [PubMed] [Google Scholar]
  • Lee RE, Worthington CR, Glew RH. The bilayer nature of deposits occurring in Gaucher's disease. Arch Biochem Biophys. 1973 Nov;159(1):259–266. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

-