Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug-Sep;40(8-9):694-706.
doi: 10.1016/j.exger.2005.07.003.

Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet

Affiliations

Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet

Rosario I Bello et al. Exp Gerontol. 2005 Aug-Sep.

Abstract

Coenzyme Q10 supplementation increases life-span of rats fed on a diet enriched with polyunsaturated fatty acids (Quiles, J.L., Ochoa, J.J., Huertas, J.R., Mataix, J., 2004b. Coenzyme Q supplementation protects from age-related DNA double-strand breaks and increased lifespan in rats fed on a PUFA-rich diet. Exp. Gerontol. 39, 189-194). Our study was set as a first attempt to establish a mechanistic link between life span extension and CoQ10 supplementation. When rats were fed on a PUFAn-6 plus CoQ10 diet, levels of CoQ10 were increased in plasma membrane at every time point compared to control rats fed on a PUFAn-6-alone diet. Ratios of CoQ9 to CoQ10 were significantly lower at every time point in both liver plasma membranes and homogenates of CoQ10-supplemented animals. CoQ10 supplementation did not affect cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1), which increased significantly with aging, but plasma membrane-bound NQO1 decreased significantly in the CoQ10-supplemented group at 12 months, when maximal incorporation of exogenous CoQ10 was observed. Neither aging nor the diet affected NADH-cytochrome b5 reductase levels. Glutathione-dependent anti-oxidant activities such as cytosolic glutathione-S-transferase (GST) and microsomal Se-independent glutathione peroxidase decreased with aging and supplementation with CoQ10 attenuated this decay. 2,2' Azobis amidinopropane (AAPH)-induced oxidation of membranes was significantly higher in aged rats, and supplementation with CoQ10 also inhibited this increase. Consistent with higher CoQ10 levels and enhanced anti-oxidant protection, plasma membrane Mg2+-dependent neutral sphingomyelinase was inhibited by dietary CoQ10 in aged rats. Our results support the involvement of thiol-dependent mechanisms in the potentiation of the anti-oxidant capacity of membranes in CoQ10-supplemented rats, further supporting the potentially beneficial anti-oxidative role of dietary CoQ10 during aging. The possibility that a decreased CoQ9/CoQ10 ratio in animals fed on the PUFAn-6-rich plus CoQ10 diet could also influence longevity is also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

-