CC BY-NC-ND 4.0 · Planta Med
DOI: 10.1055/a-2309-6298
Reviews

Paclitaxel – a Product of Fungal Secondary Metabolism or an Artefact?#

Klaus Ferdinand Gärditz
1   Institute of Public Law, University of Bonn, Bonn, Germany
2   Ombudsman for suspected cases of scientific misconduct, University of Bonn, Bonn, Germany
,
3   German Research Ombudsman, Head of Office, Berlin, Germany
› Author Affiliations

Abstract

Taxol (common name: paclitaxel) is an extremely important component of drugs for the treatment of various cancers. Thirty years after the discovery of its effectiveness, a metabolic precursor of Taxol (10-deacetylbaccatin III) is still primarily extracted from needles of European yew trees. In order to meet the considerable demand, hopes were pinned on the possibilities of biotechnological production from the very beginning. In 1993, as if by chance, Taxol was supposedly discovered in fungi that grow endobiotically in yew trees. This finding aroused hopes of biotechnological use to produce fungal Taxol in large quantities in fermenters. It never came to that. Instead, a confusing flood of publications emerged that claimed to have detected Taxol in more and more eukaryotic and even prokaryotic species. However, researchers never reproduced these rather puzzling results, and they could certainly not be applied on an industrial scale. This paper will show that some of the misguided approaches were apparently based on a seemingly careless handling of sparse evidence and on at least questionable publications. Apparently, the desired gold rush of commercial exploitation was seductive. Scientific skepticism as an indispensable core of good scientific practice was often neglected, and the peer review process has not exerted its corrective effect. Self-critical reflection and more healthy skepticism could help to reduce the risk of such aberrations in drug development. This article uses this case study as a striking example to show what can be learned from the Taxol case in terms of research ethics and the avoidance of questionable research practices.

# Parts of this article were published earlier in German in the journal “Laborjournal” LJ-Verlag GmbH & Co. KG Freiburg. Gärditz KF, Czesnick H. Taxol aus Pilzen – pharmazeutische Goldmine oder wissenschaftliche Ente? Laborjournal: 12–15. This current article contains additional and expanded research findings.




Publication History

Received: 02 February 2024

Accepted after revision: 05 April 2024

Article published online:
16 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Teuscher E, Melzig MF, Lindequist U. Biogene Arzneimittel, 8th ed.,. Stuttgart: Wissenschaftliche Verlagsgesellschaft;; 2020: 216-217
  • 2 Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25: 2677-2681
  • 3 Yang CPH, Horwitz SB. Taxol: The first microtubule stabilizing agent. Int J Mol Sci 2017; 18: 1733
  • 4 Cech NB, Oberlies NH. From plant to cancer drug: Lessons learned from the discovery of Taxol. Nat Prod Rep 2023; 40: 1153-1157
  • 5 Gärditz KF, Czesnick H. Taxol aus Pilzen – pharmazeutische Goldmine oder wissenschaftliche Ente?. Laborjournal 2023; 12-15
  • 6 Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia . J Am Chem Soc 1971; 93: 2325-2327
  • 7 Sticher O, Heilmann J, Zündorf I. Pharmakognosie – Phytopharmazie. 10th ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2015: 958-959
  • 8 Sharma A, Bhatia SK, Banyal A, Chanana I, Kumar A, Chand D, Kulshrestha S, Kumar P. An overview on Taxol production technology and its applications as anticancer agent. Biotechnol Bioprocess Eng 2022; 27: 706-728
  • 9 Škubník J, Pavlíčková V, Ruml T, Rimpelová S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants 2021; 10: 569
  • 10 Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25: 2677-2681
  • 11 Barceloux DG. Medical Toxicology of Natural Substances. Hoboken (NJ): Wiley; 2008: 900
  • 12 Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by Taxol. Nature 1979; 277: 665-667
  • 13 Fuchs DA, Johnson RK. Cytologic evidence that Taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 1978; 62: 1219-1222
  • 14 McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC. Taxol: A unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 1989; 111: 273-279
  • 15 Menzin AM, King SA, Aikins JK, Mikuta JJ, Rubin SC. Taxol (paclitaxel) was approved by FDA for the treatment of patients with recurrent ovarian cancer. Gynecol Oncol 1994; 54: 103
  • 16 Walsh V, Goodman J. Cancer chemotherapy, biodiversity, public and private property: The case of the anti-cancer drug Taxol. Soc Sci Med 1999; 49: 1215-1225
  • 17 Staniek A, Woerdenbag HJ, Kayser O. Taxomyces andreanae: A presumed paclitaxel producer demystified?. Planta Medica 2009; 75: 1561-1566
  • 18 Martin V. Overview of paclitaxel (TAXOL). Semin Oncol Nurs 1993; 9 (Suppl. 2) 2-5
  • 19 Aldhous P. Barking up the right tree. Nature 1991; 352: 96
  • 20 Much JK. Ethical issues and paclitaxel (TAXOL) administration. Semin Oncol Nurs 1993; 9 (Suppl. 2) 16-20
  • 21 Cragg GM, Schepartz SA, Suffness M, Grever MR. The Taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J Nat Prod 1993; 56: 1657-1862
  • 22 Ketchum REB, Gibson DM. Paclitaxel production in suspension cell cultures of Taxus. Plant Cell Tissue Organ Cult 1996; 46: 9-16
  • 23 An Act to provide for the management of Federal lands containing the Pacific yew to ensure a sufficient supply of Taxol, a cancer-treating drug made from the Pacific yew (The Pacific Yew Act) of December 7, 1992 (16 USC §§ 4801–4804). Accessed 2024-05-02 at: https://www.congress.gov/102/statute/STATUTE-106/STATUTE-106-Pg859.pdf
  • 24 Wolf E, Wortman D. Pacific yew management on national forests: A biological and policy analysis. Northwest Environ J 1992; 8: 347-366
  • 25 Holton RA, Somoza C, Kim HB, Liang F, Riediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang P, Murthi KK, Gentile LN, Liu JH. First total synthesis of Taxol: 1. functionalization of the B ring. J Am Chem Soc 1994; 116: 1597-1598
  • 26 Holton RA, Kim HB, Somoza C, Liang F, Riediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang P, Murthi KK, Gentile LN, Liu JH. First total synthesis of Taxol: 2. completion of the C and D rings. J Am Chem Soc 1994; 116: 1599-1600
  • 27 Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Total Synthesis of Taxol. Nature 1994; 367: 630-634
  • 28 Hu YJ, Gu CC, Wang XF, Min L, Li CC. Asymmetric total synthesis of Taxol. J Am Chem Soc 2021; 143: 17862-17870
  • 29 Walji AM, MacMillan DWC. Strategies to bypass the Taxol problem: Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 2007; 1477-1489
  • 30 Kanda Y, Ishihara Y, Wilde NC, Baran PS. Two-phase total synthesis of Taxanes: Tactics and strategies. J Org Chem 2020; 85: 10293-10320
  • 31 Cordes EH. Hallelujah Moments: Tales of Drug Discovery. 2nd ed.. New York: Oxford University Press; 2020: 119
  • 32 McChesney JD, Venkataraman SK, Henri JT. Plant natural products: Back to the future or into extinction?. Phytochemistry 2007; 68: 2015-2022
  • 33 Subban K, Kempken F. Insights into Taxol biosynthesis by endophytic fungi. Appl Microbiol Biotechnol 2023; 107: 6151-6162
  • 34 Zhang Y, Wiese L, Fang H, Alseekh S, de Souza LP, Scossa F, Molloy JJ, Christmann M, Fernie AR. Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis. Mol Plant 2023; 16: 1951-1961
  • 35 Naik S. Developments in Taxol production through endophytic fungal biotechnology: A review. Orient Pharm Exp Med 2019; 19: 1-13
  • 36 Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993; 260: 214-216
  • 37 Strobel G, Stierle A, Stierle D, Hess WM. Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 1993; 47: 71-80
  • 38 Stone R. Surprise! A fungus factory for Taxol?. Science 1993; 260: 154-155
  • 39 Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G. The search for a Taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia . J Nat Prod 1995; 58: 1315-1324
  • 40 Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana . Micobiology 1996; 142: 435-440
  • 41 Zhao J, Zhou L, Wang J, Shan T, Lingyun Z, Liu X, Gao X. Endophytic Fungi for Producing Bioactive Compounds Originally from their Host Plants. In: Méndez-Vilas A (ed.) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz, Spain: 2010: 567-576
  • 42 Kumaran RS, Kim HJ, Hur BK. Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata . J Biosci Bioeng 2010; 110: 541-546
  • 43 Kumar P, Singh B, Kumar P, Singh B, Thakur V, Thakur A, Thakur N, Pandey D, Duni C. Hyper-production of Taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol Rep 2019; 24: e00395
  • 44 Li D, Fu D, Fu D, Zhang Y, Ma X, Gao L, Wang X, Zhou D, Zhao K. Isolation, purification, and identification of Taxol and related Taxanes from Taxol-producing fungus Aspergillus niger subsp. taxi . J Microbiol Biotechnol 2017; 27: 1379-1385
  • 45 Rai N, Kumari Keshri P, Verma A, Kamble SC, Mishra P, Barik S, Singh SK, Gautam V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021; 12: 139-159
  • 46 Flores-Bustamante ZR, Rivera-Ordunã FN, Martínez-Cárdenas A, Flores-Cotera LB. Microbial paclitaxel: Advances and perspectives. J Antibiot (Tokyo) 2010; 63: 460-467
  • 47 de Andrade HF, de Araújo ALC, da Silva MV. Screening of endophytic fungi stored in a culture collection for Taxol production. Braz J Microbiol 2018; 49 S: 59-63
  • 48 Kusari S, Singh S, Jayabaskaran C. Rethinking production of Taxol (paclitaxel) using endophyte biotechnology. Trends Biotechnol 2014; 32: 304-311
  • 49 Das A, Rahman MI, Ferdous AS, Amin A, Rahman MM, Nahar N, Uddin MA, Islam MR, Khan H. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS One 2017; 12: e0178612
  • 50 Gill H, Vasundhara M. Isolation of Taxol producing endophytic fungus Alternaria Brassicicola from non-taxus medicinal plant Terminalia arjuna . World J Microbiol Biotechnol 2019; 35: 1-8
  • 51 Gu Y, Wang Y, Ma X, Wang C, Yue G, Zhang Y, Zhang Y, Li S, Ling S, Liu X, Wen X, Cao S, Huang X, Deng J, Zuo Z, Yu S, Shen L, Wu R. Greater Taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca). Appl Biochem Biotechnol 2015; 175: 155-165
  • 52 Gallego A, Malik S, Yousefzadi M, Makhzoum A, Trémouillaux-Guiller J, Bonfill M. Taxol from Corylus avellana: Paving the way for a new source of this anti-cancer drug. Plant Cell Tissue Organ Cult 2017; 129: 1-16
  • 53 Qaderi A, Omidi A, Etminan A, Oladzad A, Ebrahimi C, Dehghani Mashkani MR, Mehrafarin A. Hazel (Corylus avellana L.) as a new source of Taxol and Taxanes. J Med Plants 2012; 11: 66-77
  • 54 Salehi M, Moieni A, Safaie N, Farhadi S. Whole fungal elicitors boost paclitaxel biosynthesis induction in Corylus avellana cell culture. PLoS ONE 2020; 15: e0236191
  • 55 Lynch M. Evolutionary Cell Biology: The Origins of Cellular Architecture. Oxford: Oxford University Press; 2024: 470-490
  • 56 Jones CG, Firn RD. On the evolution of plant secondary chemical diversity. Philos Trans R Soc 1991; 333: 273-280
  • 57 Firn RD, Jones CG. Natural products – a simple model to explain chemical diversity. Nat Prod Rep 2003; 20: 382-391
  • 58 Subramanian M, Marudhamuthu M. Hitherto unknown terpene synthase organization in Taxol-producing endophytic bacteria isolated from marine macroalgae. Curr Microbiol 2020; 77: 918-923
  • 59 Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor over-production in Escherichia coli . Science 2010; 330: 70-74
  • 60 Heinig U, Scholz S, Jennewein S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 2013; 60: 161-170
  • 61 Rai N, Keshri PK, Verma A, Kamble SC, Mishra P, Barik S, Singh SK, Gautam V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021; 12: 139-159
  • 62 Vélëz H, Gauchan DP, García-Gil MR. Taxol and b-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Front Microbiol 2023; 13: 956855
  • 63 Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 2015; 33: 377-383
  • 64 Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, de Diego Puente T. A compressive review about Taxol: History and future challenges. Molecules 2020; 25: 5986
  • 65 McElroy C, Jennewein S. Taxol biosynthesis and production: From forests to fermenters. In: Schwab W, Lange BM, Wüst M (eds.) Biotechnology of Natural Products. Cham: Springer Nature; 2018: 145-185
  • 66 Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum . Proc Natl Acad Sci U.S.A. 2002; 99: 7968-7973
  • 67 Cragga GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 2016; 25 (Suppl. 2) 41-59
  • 68 Lucas DM, Still PC, Pérez LB, Grever MR, Kinghorn AD. Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets 2010; 11: 812-822
  • 69 Solimana SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN. An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 2015; 25: 2570-2576
  • 70 Solimana SSM, Raizada MN. Sites of biosynthesis and storage of Taxol in Taxus media (Rehder) plants: Mechanism of accumulation. Phytochemistry 2020; 175: 112369
  • 71 Cheng T, Kolařík M, Quijada L, Stadler M. A re-assessment of Taxomyces andreanae, the alleged Taxol-producing fungus, using comparative genomics. IMA Fungus 2022; 13: 17
  • 72 Perez-Matas E, Hidalgo-Martinez D, Palazon J. Genetic approaches in improving biotechnological production of Taxanes: An update. Front Plant Sci 2023; 14: 1100228
  • 73 Wagner H, Vollmar A, Bechtold A. Pharmazeutische Biologie 2: Biogene Arzneistoffe und Grundlagen von Gentechnik und Immunologie. 7th ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2007: 156
  • 74 Dewcik PM. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed.. ed. Chichester: Wiley; 2009: 227
  • 75 Keller NP. Fungal secondary metabolism: Regulation, function and drug discovery. Nat Rev Microbiol 2019; 17: 167-180
  • 76 Kuhnert E, Navarro-Muñoz JC, Becker K, Stadler M, Collemare J, Cox RJ. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon . Stud Mycol 2021; 99: 100118
  • 77 Cox RJ, Gulder TAM. Introduction to engineering the biosynthesis of fungal natural products. Nat Prod Rep 2023; 40: 7-8
  • 78 Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R, Guo G, Chen L, Zhang Y, Huang X, Tang Q, Liu H, Bellgard MI, Qiu D, Lai J, Barrero RA. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 2014; 15: 69
  • 79 Chakravarthi BVSK, Singh S, Kamalraj S, Gupta VK, Jayabaskaran C. Evaluation of spore inoculum and confrmation of pathway genetic blueprint of T13 αH and DBAT from a Taxol-producing endophytic fungus. Sci Rep 2020; 10: 21139
  • 80 Hirschi C. Skandalexperten – Expertenskandale. Berlin: Matthes & Seitz; 2008
  • 81 Niego ACT, Lambert C, Stadler M. The contribution of fungi to the global economy. Fungal Divers 2023; 121: 95-137
  • 82 Hezari M, Croteau R. Taxol biosynthesis: An update. Planta Med 1997; 63: 291-295
  • 83 Walker K, Croteau R. Taxol biosynthetic genes. Phytochemistry 2001; 58: 1-7
  • 84 Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev 2006; 5: 75-97
  • 85 Bamneshin M, Mirjalili MH, Naghavi MR, Cusido RM, Palazón K. Gene expression pattern and taxane biosynthesis in a cell suspension culture of Taxus baccata L. subjected to light and a phenylalanine ammonia lyase (PAL) inhibitor. J Photochem Photobiol B Biol 2022; 234: 112532
  • 86 Börner T. Die Toxine der Cyanobakterien. BiuZ 2001; 31: 108-115
  • 87 Gutzeit HO, Ludwig-Müller J. Plant natural products: Synthesis, biological functions and practical applications. Weinheim: Wiley-VCH; 2014: 81
  • 88 Matsuura HN, Fett-Neto AG. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In: Gopalakrishnakone P (ed.) Plant Toxins. Dordrecht: Springer Nature; 2017: 243-261
  • 89 Langebner T. Fingerhut und Apfelbaum – zwei Pflanzen mach(t)en Karriere. Pharmakon (Eschborn, Germany) 2024; 12: 8-15
  • 90 Gärditz KF. The poetry of the universe, the periodic table, and the scientific progress: A review of new studies on the periodic table of the elements. Found Chem 2023; 25: 269-283
  • 91 Mach E. Erkenntnis und Irrtum. 3rd ed.. ed. Leipzig: Johann Ambrosius Barth; 1917: 110
  • 92 Kohler RE. From medical chemistry to biochemistry. Cambridge: Cambridge University Press; 1982: 284
  • 93 Gärditz KF. Wissenschaftsgeschichte und politisches System – Fragilität wissenschaftlicher Freiheit im Kontext. Wissenschaftsrecht 2020; 53: 59-95