Synthesis 2024; 56(13): 2031-2046
DOI: 10.1055/a-2326-6277
paper

Palladium Nano-Dispersed and Stabilized in Organically Modified Silicate as a Heterogeneous Catalyst for the Conversion of Aldehydes into O-Silyl Ether Derivatives under Neat Conditions

Caitlyn M. Matherne
a   Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA
,
Jordan E. Wroblewski
a   Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA
,
Heather S. Drago
a   Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA
,
Gabriela T. Marchan
a   Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA
,
Alexis R. Young
a   Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA
,
Nkechi Kingsley
b   Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
,
Craig P. Plaisance
b   Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
,
Jean Fotie
a   Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA
› Author Affiliations
J.F. acknowledges the financial support from the National Science Foundation (NSF CHE-1954734) and from the Edward G. Schlieder Educational Foundation.


Abstract

Palladium nanoparticles are dispersed and stabilized in organically modified silicate (Pd@MTES), and characterized by a number of spectroscopic techniques, including FTIR, TEM, SEM, and XPS. The catalytic effect of this material toward the hydrosilylation of aldehydes and ketones is explored, and the scope of the reaction investigated, with 26 examples provided. This reaction proceeds under neat conditions via heterogeneous catalysis, and a mechanistic pathway supported by DFT calculations is proposed.

Supporting Information



Publication History

Received: 02 April 2024

Accepted after revision: 14 May 2024

Accepted Manuscript online:
14 May 2024

Article published online:
04 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Friend CM, Xu B. Acc. Chem. Res. 2017; 50: 517
    • 1b Wang Y, Sun J, Tsubaki N. Acc. Chem. Res. 2023; 56: 2341
    • 1c Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y. Chem. Soc. Rev. 2014; 43: 3480
    • 2a Yue J. Catal. Today 2018; 308: 3
    • 2b Vasquez-Cespedes S, Betori RC, Cismesia MA, Kirsch JK, Yang Q. Org. Process Res. Dev. 2021; 25: 740
    • 4a Baumann M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020; 24: 1802
    • 4b Beckers O, Smeets S, Lutsen L, Maes W. J. Mater. Chem. C 2022; 10: 1606
    • 4c Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
  • 5 Duke BJ, Akeroyd EN, Bhatt SV, Onyeagusi CI, Bhatt SV, Adolph BR, Fotie J. New J. Chem. 2018; 42: 11782
    • 6a Cui Y, Zhao Y, Wu J, Hou H. Adv. Funct. Mater. 2023; 33: 2302573
    • 6b Pourmadadi M, Ostovar S, Eshaghi MM, Rajabzadeh-Khosroshahi M, Safakhah S, Ghotekar S, Rahdar A, Diez-Pascual AM. Appl. Organomet. Chem. 2023; 37: e6982
    • 6c Rezki M, Septiani NL. W, Iqbal M, Adhika DR, Wenten IG, Yuliarto B. J. Electrochem. Soc. 2022; 169: 017504
  • 7 Marra L, Fusillo V, Wiles C, Zizzari A, Watts P, Rinaldi R, Arima V. Sci. Adv. Mater. 2013; 5: 475
  • 8 Ciriminna R, Pandarus V, Fidalgo A, Ilharco LM, Beland F, Pagliaro M. Org. Process Res. Dev. 2015; 19: 755
  • 9 Ciriminna R, Pandarus V, Gingras G, Beland F, Pagliaro M. ACS Sustainable Chem. Eng. 2013; 1: 249
  • 10 John L, Janeta M, Szafert S. New J. Chem. 2018; 42: 39
    • 11a Ludwig JR, Schindler CS. Chem 2017; 2: 313
    • 11b Sruamsiri D, Shimojima A, Ogawa M. ACS Appl. Mater. Interfaces 2023; 15: 41130
    • 12a Laird M, Herrmann N, Ramsahye N, Totee C, Carcel C, Unno M, Bartlett JR, Man MW. C. Angew. Chem. Int. Ed. 2021; 60: 3022
  • 13 Zhou H, Liu L, Zhang W, Yang R. J. Appl. Polym. Sci. 2023; 140: e54378
    • 14a Moein A, Kebritchi A. Silicon 2023; 15: 5845
    • 14b Hudson R, Katz JL. ACS Sustainable Chem. Eng. 2018; 6: 14880
    • 15a Bermesheva EV, Alentiev DA, Moskalets AP, Bermeshev MV. Polym. Sci., Ser. B 2019; 61: 314
    • 15b Zhang K, Huang S, Zhang Q, Zhu H, Zhu S. Can. J. Chem. Eng. 2023; 101: 4979
  • 16 John L, Ejfler J. Polymers 2023; 15: 1452
  • 17 Lamont C, Grego T, Nanbakhsh K, Shah Idil A, Giagka V, Vanhoestenberghe A, Cogan S, Donaldson N. J. Neural Eng. 2021; 18: 055003
    • 18a Bialek M, Czaja K. Materials 2023; 16: 1876
    • 18b Liu C, Ma C, Xie Q, Zhang G. J. Mater. Chem. A 2017; 5: 15855
  • 19 Belancon MP, Sandrini M, Zanuto VS, Muniz RF. J. Non-Cryst. Solids 2023; 619: 122548
    • 20a Kong X, Xi Z, Wang L, Zhou Y, Liu Y, Wang L, Li S, Chen X, Wan Z. Molecules 2023; 28: 2079
    • 20b Ojha GP, Kang GW, Kuk Y.-S, Hwang YE, Kwon OH, Pant B, Acharya J, Park YW, Park M. Nanomaterials 2023; 13: 150
    • 20c Chakravarty S, Teng M, Safian R, Zhuang L. J. Semicond. 2021; 42: 041303
    • 21a Bodiford NK, Coffer JL. RSC Smart Mater. 2017; 25: 90
    • 21b Peng F, Cao Z, Ji X, Chu B, Su Y, He Y. Nanomedicine 2015; 10: 2109
    • 21c Peng F, Su Y, Zhong Y, Fan C, Lee S.-T, He Y. Acc. Chem. Res. 2014; 47: 612
    • 21d Peng H, Wang G, Chang N, Wang Q. Applications of Porous Silicon Materials in Drug Delivery. In Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Vol. 2, Chap 18. Korotcenkov G. CRC Press; Boca Raton: 2016. 337
    • 21e Zhang X.-F, Dong H.-X, Chou Y.-Y. Appl. Mech. Mater. 2014; 618: 431
    • 21f Qu H, Bhattacharyya S, Ducheyne P. Adv. Drug Delivery Rev. 2015; 94: 96
    • 21g Wang W, Wang P, Tang X, Elzatahry AA, Wang S, Al-Dahyan D, Zhao M, Yao C, Hung C.-T, Zhu X, Zhao T, Li X, Zhang F, Zhao D. ACS Cent. Sci. 2017; 3: 839
    • 22a Sun J, Deng L. ACS Catal. 2016; 6: 290
    • 22b Du X, Huang Z. ACS Catal. 2017; 7: 1227
    • 22c Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
    • 22d Zaranek M, Pawluc P. ACS Catal. 2018; 8: 9865
    • 22e Shi R, Zhang Z, Hu X. Acc. Chem. Res. 2019; 52: 1471
    • 22f Naganawa Y, Inomata K, Sato K, Nakajima Y. Tetrahedron Lett. 2020; 61: 151513
    • 23a Kumar A, Gupta R, Mani G. Organometallics 2023; 42: 732
    • 23b Almutairi N, Vijjamarri S, Du G. Catalysts 2023; 13: 665
    • 23c Thompson CV, Arman HD, Tonzetich ZJ. Organometallics 2022; 41: 430
    • 23d Raya-Baron A, Ona-Burgos P, Fernandez I. ACS Catal. 2019; 9: 5400
    • 23e Matsubara K, Mitsuyama T, Shin S, Hori M, Ishikawa R, Koga Y. Organometallics 2021; 40: 1379
  • 24 Chouthaiwale PV, Rawat V, Sudalai A. Tetrahedron Lett. 2012; 53: 148
    • 25a Eckstorff F, Zhu Y, Maurer R, Mueller TE, Scholz S, Lercher JA. Polymer 2011; 52: 2492
    • 25b Feher FJ, Terroba R, Jin R.-Z, Wyndham KD, Lucke S, Brutchey R, Nguyen F. Polym. Mater. Sci. Eng. 2000; 82: 301
    • 25c Feher FJ, Soulivong D, Eklund AG, Wyndham KD. Chem. Commun. 1997; 1185
  • 26 Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB. Dalton Trans. 2003; 2945
  • 27 Grzelak M, Marciniec B. Chem. Asian J. 2020; 15: 2437
    • 28a Bharathi S, Fishelson N, Lev O. Langmuir 1999; 15: 1929
    • 28b Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M. Chem. Mater. 2005; 17: 6686
    • 29a Janeta M, John L, Ejfler J, Szafert S. Chem. Eur. J. 2014; 20: 15966
    • 29b Janeta M, John L, Ejfler J, Szafert S. RSC Adv. 2015; 5: 72340
    • 30a D’Souza L, Sampath S. Langmuir 2000; 16: 8510
    • 30b Devarajan S, Bera P, Sampath S. J. Colloid Interface Sci. 2005; 290: 117
  • 31 Hanprasit S, Tungkijanansin N, Prompawilai A, Eangpayung S, Ervithayasuporn V. Dalton Trans. 2016; 45: 16117
    • 32a O’Hare L.-A, Parbhoo B, Leadley SR. Surf. Interface Anal. 2004; 36: 1427
    • 32b Kato H, Takemura S, Takakuwa N, Ninomiya K, Watanabe T, Watanabe Y, Nanba N, Hiramatsu T. J. Vac. Sci. Technol., A 2006; 24: 1505
    • 33a Bashouti MY, Paska Y, Puniredd SR, Stelzner T, Christiansen S, Haick H. Phys. Chem. Chem. Phys. 2009; 11: 3845
    • 33b Puniredd SR, Assad O, Haick H. J. Am. Chem. Soc. 2008; 130: 9184
    • 33c Puniredd SR, Assad O, Haick H. J. Am. Chem. Soc. 2008; 130: 13727
    • 34a Zhang F.-B, Li H.-L. Carbon 2006; 44: 3195
    • 34b Zhang Q.-L, Feng J.-X, Wang A.-J, Wei J, Feng J.-J. RSC Adv. 2014; 4: 52640
    • 34c Ju P, Chen J, Chen A, Chen L, Yu Y. ACS Sustainable Chem. Eng. 2017; 5: 2516
    • 35a Kunai A, Sakurai T, Toyoda E, Ishikawa M, Yamamoto Y. Organometallics 1994; 13: 3233
    • 35b Ferreri C, Costantino C, Chatgilialoglu C, Boukherroub R, Manuel G. J. Organomet. Chem. 1998; 554: 135
  • 36 Rasmussen AM. H, Hammer B. J. Chem. Phys. 2012; 136: 174701
  • 37 Reuter K, Scheffler M. Phys. Rev. B. 2001; 65: 03540
  • 38 Khezeli F, Plaisance C. J. Phys. Chem. A. 2024; 128: 1576
  • 39 Kresse G, Furthmueller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996; 54: 11169
  • 40 Wellendorff J, Lundgaard KT, Moegelhoej A, Petzold V, Landis DD, Noerskov JK, Bligaard T, Jacobsen KW. Phys. Rev. B: Condens. Matter Mater. Phys. 2012; 85: 235141
    • 41a Henkelman G, Uberuaga BP, Jonsson H. J. Chem. Phys. 2000; 113: 9901
    • 41b Henkelman G, Jonsson H. J. Chem. Phys. 2000; 113: 9978
  • 42 Henkelman G, Jonsson H. J. Chem. Phys. 1999; 111: 7010
  • 43 Dong H, Berke H. Adv. Synth. Catal. 2009; 351: 1783
    • 44a Chauvier C, Thuery P, Cantat T. Angew. Chem. Int. Ed. 2016; 55: 14096
    • 44b Diez-Gonzalez S, Scott NM, Nolan SP. Organometallics 2006; 25: 2355
  • 45 Chatterjee B, Gunanathan C. Chem. Commun. 2014; 50: 888
  • 46 Rawat S, Bhandari M, Porwal VK, Singh S. Inorg. Chem. 2020; 59: 7195
  • 47 Do Y, Han J, Rhee YH, Park J. Adv. Synth. Catal. 2011; 353: 3363
  • 48 Teci M, Lentz N, Brenner E, Matt D, Toupet L. Dalton Trans. 2015; 44: 13991
  • 49 Andrews RJ, Chitnis SS, Stephan DW. Chem. Commun. 2019; 55: 5599
  • 50 Rubio M, Campos J, Carmona E. Org. Lett. 2011; 13: 5236
  • 51 Liberman-Martin AL, Bergman RG, Tilley TD. J. Am. Chem. Soc. 2015; 137: 5328
  • 52 Hua Y, Jung S, Roh J, Jeon J. J. Org. Chem. 2015; 80: 4661
  • 53 Simmons EM, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 17092
    • 54a Tondreau AM, Lobkovsky E, Chirik PJ. Org. Lett. 2008; 10: 2789
    • 54b Royo B, Sortais J.-B, Darcel C, Uhl W, Berke H, Fukuzawa S.-I. Eur. J. Inorg. Chem. 2012; 1002
    • 55a Maas LM, Fasting C, Vossnacker P, Limberg N, Golz P, Mueller C, Riedel S, Hopkinson MN. Angew. Chem. Int. Ed. 2024; 63: e202317770
    • 55b Miyazaki K, Nakata K. J. Org. Chem. 2022; 87: 10509
  • 56 Henry AT, Nanan DA. R, Baines KM. Dalton Trans. 2023; 52: 10363
    • 57a Davies HM. L, Hedley SJ, Bohall BR. J. Org. Chem. 2005; 70: 10737
    • 57b Khalafi-Nezhad A, Fareghi Alamdari R, Zekri N. Tetrahedron 2000; 56: 7503
    • 58a Liu G, Li P. Synlett 2023; 34: 2447
    • 58b Lipshutz BH, Keith JS. Tetrahedron Lett. 1998; 39: 2495
    • 58c Qi Z.-C, Li Y, Wang J, Ma L, Wang G.-W, Yang S.-D. ACS Catal. 2023; 13: 13301
    • 59a Cruz TF. C, Veiros LF, Gomes PT. Inorg. Chem. 2022; 61: 1195
    • 59b Evans PA, Longmire JM, Modi DP. Tetrahedron Lett. 1995; 36: 3985
  • 60 Marzi E, Spitaleri A, Mongin F, Schlosser M. Eur. J. Org. Chem. 2002; 2508
  • 61 Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal. 2020; 10: 2100
  • 62 Arii H, Nakao K, Masuda H, Kawashima T. ACS Omega 2022; 7: 5166
  • 63 Dorsey CL, Gabbai FP. Organometallics 2008; 27: 3065
    • 64a Edlova T, Normand AT, Cattey H, Brandes S, Wu Y, Antonangelo A, Theron B, Bonnin Q, Carta M, Le Gendre P. Organometallics 2023; 42: 1166
    • 64b Jiang H.-J, Simon HD. A, Irran E, Klare HF. T, Oestreich M. Organometallics 2023; 42: 48
    • 65a Eaborn C, Odell K, Pidcock A. J. Organomet. Chem. 1973; 63: 93
    • 65b Yigit B, Yigit M, Ozdemir I. Inorg. Chim. Acta 2017; 467: 75
    • 65c Yigit M, Oezdemir I, Cetinkaya B, Cetinkaya E. J. Mol. Catal. A: Chem. 2005; 241: 88