Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;14(6):702-7.
doi: 10.1021/tx0002536.

Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry

Affiliations

Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry

C Li et al. Chem Res Toxicol. 2001 Jun.

Abstract

Tea has been proposed to have beneficial health effects which have been attributed to the polyphenolic compounds known as catechins. The bioavailability and biotransformation of these compounds, however, are not clearly understood. In this study, we used liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) to determine urinary glucuronidated and sulfated tea catechins and their metabolites (including methylated and ring-fission metabolites) based on the detection of deprotonated molecular ions and aglycone fragment ions. The compound resolution was achieved both chromatographically and mass spectroscopically. After green tea administration, the major conjugates appeared in human, mouse, and rat urine samples were identified as monoglucuronides and monosulfates of (-)-epigallocatechin (EGC) and (-)-epicatechin. We also found O-methyl-EGC-O-glucuronides and -O-sulfates and O-methyl-epicatechin-O-sulfates in human urine. (-)-5-(3',4',5'-Trihydroxyphenyl)-gamma-valerolactone (M4) and (-)-5-(3',4'-dihydroxyphenyl)-gamma-valerolactone (M6), the ring-fission metabolites of EGC and (-)-epicatechin, respectively, were also predominantly in monoglucuronide and monosulfate forms in the urine. In comparison to rats, the urinary metabolite profiles of tea catechins in mice resemble more closely to those in humans. This is the first report describing direct simultaneous analysis of multiple tea catechin conjugates in urine samples. This method will allow more thorough investigations of the biotransformation of tea polyphenols.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-