Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;31(5):572-9.
doi: 10.1124/dmd.31.5.572.

Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate

Affiliations

Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate

Hong Lu et al. Drug Metab Dispos. 2003 May.

Abstract

(-)-Epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) are the major polyphenolic constituents in green tea. In this study, we characterized the enzymology of cytosolic catechol-O-methyltransferase (COMT)-catalyzed methylation of EGCG and EGC in humans, mice, and rats. At 1 microM, EGCG was readily methylated by liver cytosolic COMT to 4"-O-methyl-EGCG and then to 4',4"-di-O-methyl-EGCG; EGC was methylated to 4'-O-methyl-EGC. The K(m) and V(max) values for EGC methylation were higher than EGCG; for example, with human liver cytosol, the K(m) were 4.0 versus 0.16 microM and V(max) were 1.28 versus 0.16 nmol/mg/min. Rat liver cytosol had higher COMT activity than that of humans or mice. The small intestine had lower specific activity than the liver in the methylation of EGCG and EGC. Glucuronidation on the B-ring or the D-ring of EGCG greatly inhibited the methylation on the same ring, but glucuronidation on the A-ring of EGCG or EGC did not affect their methylation. Using EGC and 3,4-dihydroxy-L-phenylalanine as substrates, EGCG, 4"-O-methyl-EGCG, and 4',4"-di-O-methyl-EGCG were all potent inhibitors (IC(50) approximately 0.2 microM) of COMT. The COMT-inhibiting activity of (-)-EGCG-3'-O-glucuronide was similar to EGCG, but (-)-EGCG-4"-O-glucuronide was less potent. The present work provides basic information on the methylation of EGCG and suggests that EGCG may inhibit COMT-catalyzed methylation of endogenous and exogenous compounds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-