Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Nov;20(11):2311-3.
doi: 10.1038/oby.2011.139. Epub 2011 Jun 2.

(-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice

Affiliations
Free article

(-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice

Kimberly A Grove et al. Obesity (Silver Spring). 2012 Nov.
Free article

Abstract

Tea (Camellia sinensis, Theaceae) has been shown to have obesity preventive effects in laboratory studies. We hypothesized that dietary epigallocatechin-3-gallate (EGCG) could reverse metabolic syndrome in high fat-fed obese C57bl/6J mice, and that these effects were related to inhibition of pancreatic lipase (PL). Following treatment with 0.32% EGCG for 6 weeks, a 44% decrease in body weight (BW) gain in high fat-fed, obese mice (P < 0.01) was observed compared to controls. EGCG treatment increased fecal lipid content by 29.4% (P < 0.05) compared to high fat-fed control, whereas in vitro, EGCG dose-dependently inhibited PL (IC(50) = 7.5 µmol/l) in a noncompetitive manner with respect to substrate concentration. (-)-Epicatechin-3-gallate exhibited similar inhibitory activity, whereas the nonester-containing (-)-epigallocatechin did not. In conclusion, EGCG supplementation reduced final BW and BW gain in obese mice, and some of these effects may be due to inhibition of PL by EGCG.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-