It has become widely accepted that the most dangerous cardiac arrhythmias are due to reentrant waves, i.e., electrical wave(s) that recirculate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart’s natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, have made it extremely difficult to pinpoint the detailed dynamics of these life-threatening reentrant arrhythmias. A simplified ionic model of the cardiac action potential (AP), which can be fitted to a wide variety of experimentally and numerically obtained mesoscopic characteristics of cardiac tissue such as AP shape and restitution of AP duration and conduction velocity, is used to explain many different mechanisms of spiral wave breakup which in principle can occur in cardiac tissue. Some, but not all, of these mechanisms have been observed before using other models; therefore, the purpose of this paper is to demonstrate them using just one framework model and to explain the different parameter regimes or physiological properties necessary for each mechanism (such as high or low excitability, corresponding to normal or ischemic tissue, spiral tip trajectory types, and tissue structures such as rotational anisotropy and periodic boundary conditions). Each mechanism is compared with data from other ionic models or experiments to illustrate that they are not model-specific phenomena. Movies showing all the breakup mechanisms are available at http://arrhythmia.hofstra.edu/breakup and at ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-12-039203/INDEX.html. The fact that many different breakup mechanisms exist has important implications for antiarrhythmic drug design and for comparisons of fibrillation experiments using different species, electromechanical uncoupling drugs, and initiation protocols.

1.
American Heart Association, 2001 Heart and Stroke Statistical Update (American Heart Association, Dallas, 2000).
2.
D. P.
Zipes
and
H. J. J.
Wellens
, “
Sudden cardiac death
,”
Circulation
98
,
2334
2351
(
1998
).
3.
R. J.
Myerburg
,
A.
Interian
,
R. M.
Mitrani
,
K. M.
Kessler
, and
A.
Castellanos
, “
Frequency of sudden cardiac death and profiles of risk
,”
Am. J. Cardiol.
80
,
10F
19F
(
1997
).
4.
D. Scherf and A. Schott, Extrasystoles and Allied Arrhythmias (Grune and Stratton, New York, 1953).
5.
T.
Sano
and
T.
Sawanobori
, “
Mechanism initiating ventricular fibrillation demonstrated in cultured ventricular muscle tissue
,”
Circ. Res.
26
,
201
210
(
1962
).
6.
M.
Haı̈ssaguerre
,
P.
Jaı̈s
,
D. C.
Shah
,
A.
Takahashi
,
M.
Hocini
,
G.
Quinious
,
S.
Garrigue
,
A.
Le Mouroux
,
P.
Le Métayer
, and
J.
Clémenty
, “
Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins
,”
N. Engl. J. Med.
338
,
659
666
(
1998
).
7.
J. L.
Lin
,
L. P.
Lai
,
Y. Z.
Tseng
,
W. P.
Lien
, and
S. K. S.
Huang
, “
Global distribution of atrial ectopic foci triggering recurrence of atrial tachyarrhythmia after electrical cardioversion of long-standing atrial fibrillation
,”
J. Am. Coll. Cardiol.
37
,
904
910
(
2001
).
8.
R. A.
Gray
,
J.
Jalife
,
A.
Panfilov
,
W. T.
Baxter
,
C.
Cabo
,
J. M.
Davidenko
, and
A. M.
Pertsov
, “
Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart
,”
Circulation
91
,
2454
2469
(
1995
).
9.
J. M.
Davidenko
,
A. M.
Pertsov
,
R.
Salomonsz
,
W. T.
Baxter
, and
J.
Jalife
, “
Stationary and drifting spiral waves of excitation in isolated cardiac muscle
,”
Nature (London)
355
,
349
351
(
1992
).
10.
M. J.
Janse
,
F. J. G.
Wilms-Schopman
, and
R.
Coronel
, “
Ventricular fibrillation is not always due to multiple wavelet re-entry
,”
J. Cardiovasc. Electrophysiol.
6
,
512
521
(
1995
).
11.
F. H.
Samie
,
O.
Berenfeld
,
J.
Anumonwo
,
S. F.
Mironov
,
S.
Udassi
,
J.
Beaumont
,
S.
Taffet
,
A. M.
Pertsov
, and
J.
Jalife
, “
Rectification of the background potassium current: A determinant of rotor dynamics in ventricular fibrillation
,”
Circ. Res.
89
,
1216
1223
(
2001
).
12.
P. V.
Bayly
,
B. H.
KenKnight
,
J. M.
Rogers
,
E. E.
Johnson
,
R. E.
Ideker
, and
W. M.
Smith
, “
Spatial organization, predictability, and determinism in ventricular fibrillation
,”
Chaos
8
,
103
115
(
1998
).
13.
Y. H.
Kim
,
M.
Yashima
,
T. J.
Wu
,
R.
Doshi
,
P. S.
Chen
, and
H.
Karagueuzian
, “
Mechanism of procainamide-induced prevention of spontaneous wave break during ventricular fibrillation: Insight into the maintenance of fibrillation wave fronts
,”
Circulation
100
,
666
674
(
1999
).
14.
F.
Witkowski
,
L. J.
Leon
,
P. A.
Penkoske
,
W. R.
Giles
,
M. L.
Spano
,
W. L.
Ditto
, and
A. T.
Winfree
, “
Spatiotemporal evolution of ventricular fibrillation
,”
Nature (London)
392
,
78
82
(
1998
).
15.
G. P.
Walcott
,
G. N.
Kay
,
V. J.
Plumb
,
W. M.
Smith
,
J. M.
Rogers
,
A. E.
Epstein
, and
R. E.
Ideker
, “
Endocardial wave front organization during ventricular fibrillation in humans
,”
J. Am. Coll. Cardiol.
39
,
109
115
(
2002
).
16.
I. R.
Efimov
,
V.
Sidorov
,
Y.
Cheng
, and
B.
Wollenzier
, “
Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart
,”
J. Cardiovasc. Electrophysiol.
10
,
1452
1462
(
1999
).
17.
R. A.
Gray
,
A. M.
Pertsov
, and
J.
Jalife
, “
Spatial and temporal organization during cardiac fibrillation
,”
Nature (London)
392
,
75
78
(
1998
).
18.
Cardiac Arrhythmia Suppression Trial (CAST) Investigators, “Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction,” N. Engl. J. Med. 321, 406–412 (1989).
19.
Cardiac Arrhythmia Suppression Trial (CAST) II Investigators, “Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction,” N. Engl. J. Med. 327, 227–233 (1992).
20.
A.
Waldo
,
A. J.
Camm
,
H.
deRuyter
,
P. L.
Friedman
,
D. J.
MacNeil
,
J. F.
Pauls
,
B.
Pitt
,
C. M.
Pratt
,
P. J.
Schwartz
, and
E. P.
Veltri
, “
Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction
,”
Lancet
348
,
7
12
(
1996
).
21.
B. C.
Hill
,
A. J.
Hunt
, and
K. R.
Courtney
, “
Reentrant tachycardia in a thin layer of ventricular subepicardium: Effects of d-sotalol and lidocaine
,”
J. Cardiovasc. Pharmacol.
16
,
871
880
(
1990
).
22.
R. E.
Ideker
,
T. N.
Chattipakorn
, and
R. A.
Gray
, “
Defibrillation mechanisms: The parable of the blind men and the elephant
,”
J. Cardiovasc. Electrophysiol.
11
,
1008
1013
(
2000
).
23.
R. A.
Gray
and
J.
Jalife
, “
Ventricular fibrillation and atrial fibrillation are two different beasts
,”
Chaos
8
,
65
78
(
1998
).
24.
Optical Mapping of Cardiac Excitation and Arrhythmias, edited by D. S. Rosenbaum and J. Jalife (Futura, New York, 2001).
25.
W. T.
Baxter
,
S. F.
Mironov
,
A. V.
Zaitsev
,
J.
Jalife
, and
A. M.
Pertsov
, “
Visualizing excitation waves inside cardiac muscle using transillumination
,”
Biophys. J.
80
,
516
530
(
2001
).
26.
D. A.
Hooks
,
I. J.
LeGrice
,
J. D.
Harvey
, and
B. H.
Smaill
, “
Intramural multisite recording of transmembrane potential in the heart
,”
Biophys. J.
81
,
2671
2680
(
2001
).
27.
J. M. Rogers, S. B. Melnick, and J. Huang, “Fiberglass needle electrodes for transmural cardiac mapping” (unpublished).
28.
N.
Wiener
and
A.
Rosenblueth
, “
The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle
,”
Arch. Inst. Cardiol. Mex
16
,
205
265
(
1946
).
29.
G. R.
Mines
, “
On dynamic equilibrium in the heart
,”
J. Physiol. (London)
46
,
349
383
(
1913
).
30.
W. E.
Garrey
, “
The nature of fibrillatory contraction of the heart, its relation to tissue mass and form
,”
Am. J. Physiol.
33
,
397
414
(
1914
).
31.
J. A.
McWilliam
, “
Fibrillar contraction of the heart
,”
J. Physiol. (London)
8
,
296
310
(
1887
).
32.
G. K.
Moe
, “
On the multiple wavelet hypothesis of atrial fibrillation
,”
Arch. Int. Pharmacodyn Ther.
140
,
183
188
(
1962
).
33.
G. K.
Moe
,
W. C.
Rheinboldt
, and
J. A.
Abildskov
, “
A computer model of atrial fibrillation
,”
Am. Heart J.
67
,
200
220
(
1964
).
34.
M.
Courtemanche
, “
Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity
,”
Chaos
6
,
579
600
(
1996
).
35.
A.
Karma
, “
Electrical alternans and spiral wave breakup in cardiac tissue
,”
Chaos
4
,
461
472
(
1994
).
36.
M.
Bär
and
M.
Eiswirth
, “
Turbulence due to spiral breakup in a continuous excitable medium
,”
Phys. Rev. E
48
,
R1635
R1637
(
1993
).
37.
A. F. M.
Maree
and
A. V.
Panfilov
, “
Spiral breakup in excitable tissue due to lateral instability
,”
Phys. Rev. Lett.
78
,
1819
1822
(
1997
).
38.
A.
Giaquinta
,
S.
Boccaletti
, and
F. T.
Arecchi
, “
Superexcitability induced spiral breakup in excitable systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
6
,
1753
1759
(
1996
).
39.
V. N.
Biktashev
,
A. V.
Holden
, and
H.
Zhang
, “
Tension of organizing filaments of scoll waves
,”
Philos. Trans. R. Soc. London, Ser. A
347
,
611
630
(
1994
).
40.
A. V.
Panfilov
and
J. P.
Keener
, “
Re-entry in three-dimensional Fitzhugh–Nagumo medium with rotational anisotropy
,”
Physica D
84
,
545
552
(
1995
).
41.
F. H.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
42.
E. J.
Vigmond
,
R.
Ruckdeschel
, and
N.
Trayanova
, “
Reentry in a morphologically realistic atrial model
,”
J. Cardiovasc. Electrophysiol.
12
,
1046
1054
(
2001
).
43.
N.
Virag
,
J. M.
Vesin
, and
L.
Kappenberger
, “
A computer model of cardiac electrical activity for the simulation of arrhythmias
,”
Pacing Clin. Electrophysiol.
21
,
2366
2371
(
1998
).
44.
E. M.
Cherry
,
F.
Fenton
,
H. M.
Hastings
,
F.
Xie
,
A.
Garfinkel
,
J. N.
Weiss
, and
S. J.
Evans
, “
The role of decreased conduction velocity in the initiation and maintenance of atrial fibrillation in a computer model of human atria
,”
Pacing Clin. Electrophysiol.
24
,
538
(
2002
).
45.
F.
Fenton
,
E. M.
Cherry
,
I.
Banville
,
R. A.
Gray
,
H. M.
Hastings
,
A.
Karma
, and
S. J.
Evans
, “
Validation of realistic 3D computer models of ventricular arrhythmias with optical mapping experiments
,”
Pacing Clin. Electrophysiol.
24
,
538
(
2002
).
46.
M.
Courtemanche
,
L.
Glass
, and
J. P.
Keener
, “
Instabilities of a propagating pulse in a ring of excitable media
,”
Phys. Rev. Lett.
70
,
2182
2185
(
1993
).
47.
J. J.
Tyson
and
J. P.
Keener
, “
Singular perturbation theory of traveling waves in an excitable medium
,”
Physica D
32
,
327
361
(
1988
).
48.
H.
Ito
and
L.
Glass
, “
Theory of reentrant excitation in a ring of cardiac tissue
,”
Physica D
56B
,
84
106
(
1992
).
49.
A.
Karma
,
H.
Levine
, and
X.
Zou
, “
Theory of pulse instabilities in electrophysiological models of excitable tissues
,”
Physica D
73
,
113
127
(
1994
).
50.
M.
Watanabe
,
F.
Fenton
,
S.
Evans
,
H.
Hastings
, and
A.
Karma
, “
Mechanisms for discordant alternans
,”
J. Cardiovasc. Electrophysiol.
12
,
196
206
(
2001
).
51.
A.
Garfinkel
,
Y. H.
Kim
,
O.
Voroshilovsky
,
Z.
Qu
,
J. R.
Kil
,
M. H.
Lee
,
H. S.
Karagueuzian
,
J. N.
Weiss
, and
P. S.
Chen
, “
Preventing ventricular fibrillation by flattening cardiac restitution
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
6061
6066
(
2000
).
52.
C.
Delgado
,
B.
Steinhaus
,
M.
Delmar
,
D. R.
Chialvo
, and
J.
Jalife
, “
Directional differences in excitabilities and margin of safety for propagation in sheep ventricular epicardial muscle
,”
Circ. Res.
67
,
97
110
(
1990
).
53.
T.
Watanabe
,
P. M.
Rautaharju
, and
T. F.
McDonald
, “
Ventricular action potentials, ventricular extracellular potential, and the ECG of guinea pig
,”
Circ. Res.
57
,
362
373
(
1995
).
54.
C.
Antzelevitch
,
S.
Sicouri
,
S. H.
Litovsky
,
A.
Lukas
,
S. C.
Krishnan
,
J. M.
Di Diego
,
G. A.
Gintant
, and
D. W.
Liu
, “
Heterogeneity within the ventricular wall
,”
Circ. Res.
69
,
1427
1449
(
1991
).
55.
M. R.
Boyett
and
B. R.
Jewell
, “
A study of the factors responsible for rate-dependent shortening of the action potential in mammalian ventricular muscle
,”
J. Physiol. (London)
285
,
359
380
(
1978
).
56.
J. B.
Nolasco
and
R. W.
Dahlen
, “
A graphic method for the study of alternation in cardiac action potentials
,”
J. Appl. Physiol.
25
,
191
196
(
1968
).
57.
W.
Quan
and
Y.
Rudy
, “
Unidirectional block and reentry of cardiac excitation: a model study
,”
Circ. Res.
66
,
367
382
(
1990
).
58.
D. R.
Chialvo
,
D. C.
Michaels
, and
J.
Jalife
, “
Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers
,”
Circ. Res.
66
,
525
545
(
1990
).
59.
V. I.
Krinsky
and
I. R.
Efimov
, “
Vortices with linear cores in mathematical models of excitable media
,”
Physica A
188
,
55
60
(
1992
).
60.
V. I.
Krinsky
,
I. R.
Efimov
, and
J.
Jalife
, “
Vortices with linear cores in excitable media
,”
Proc. R. Soc. London, Ser. A
437
,
645
655
(
1992
).
61.
D. T.
Kim
,
Y.
Kwan
,
J. J.
Lee
,
T.
Ikeda
,
T.
Uchida
,
K.
Kamjoo
,
Y. H.
Kim
,
J. J. C.
Ong
,
C. A.
Athill
,
T. J.
Wu
,
L.
Czer
,
H. S.
Karagueuzian
, and
P. S.
Chen
, “
Patterns of spiral tip motion in cardiac tissue
,”
Chaos
8
,
137
148
(
1998
).
62.
A. T.
Winfree
, “
Varieties of spiral wave behavior in excitable media
,”
Chaos
1
,
303
333
(
1991
).
63.
D.
Barkley
, “
Euclidean symmetry and the dynamics of rotating spiral waves
,”
Phys. Rev. Lett.
72
,
164
167
(
1994
).
64.
I. R.
Efimov
,
V. I.
Krinsky
, and
J.
Jalife
, “
Dynamics of rotating vortices in the Beeler–Reuter model of cardiac tissue
,”
Chaos, Solitons Fractals
5
,
513
526
(
1995
).
65.
A. T.
Winfree
, “
Heart muscle as a reaction-diffusion medium: The roles of electric potential diffusion, activation front curvature and anisotropy
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
487
526
(
1997
).
66.
A. S.
Mikhailov
and
V. S.
Zykov
, “
Kinematical theory of spiral waves in excitable media: comparison with numerical simulations
,”
Physica D
52
,
379
397
(
1991
).
67.
J.
Beaumont
,
N.
Davidenko
,
J. M.
Davidenko
, and
J.
Jalife
, “
Spiral waves in two-dimensional models of ventricular muscle: Formation of a stationary core
,”
Biophys. J.
75
,
1
14
(
1998
).
68.
N. F.
Otani
, “
The primary mechanism of spiral wave meandering
,”
Chaos
12
,
829
842
(
2002
).
69.
F. Fenton, “Effects of restitution and activation shape on the dynamics of cell models” (unpublished).
70.
V.
Hakim
and
A.
Karma
, “
Spiral wave in excitable media: the large core limit
,”
Phys. Rev. Lett.
79
,
665
668
(
1997
).
71.
V.
Hakim
and
A.
Karma
, “
Theory of spiral wave dynamics in weakly excitable media: Asymptotic reduction to a kinematic model and applications
,”
Phys. Rev. E
60
,
5073
5105
(
1999
).
72.
D.
Barkley
, “
Linear stability analysis of rotating spiral waves in excitable media
,”
Phys. Rev. Lett.
68
,
2090
2093
(
1992
).
73.
G.
Li
,
Q.
Ouyang
,
V. V.
Petrov
, and
H. L.
Swinney
, “
Transition from simple rotating chemical spirals to meandering and traveling spirals
,”
Phys. Rev. Lett.
77
,
2105
2108
(
1996
).
74.
Z.
Qu
,
J.
Kil
,
F.
Xie
,
A.
Garfinkel
, and
J. N.
Weiss
, “
Scroll wave dynamics in a three-dimensional cardiac tissue model: Roles of restitution, thickness, and fiber rotation
,”
Biophys. J.
78
,
2761
2775
(
2000
).
75.
Y. H.
Kim
,
A.
Garfinkel
,
T.
Ikeda
,
T. J.
Wu
,
C. A.
Athill
,
J. N.
Weiss
,
H. S.
Karagueuzian
, and
P. S.
Chen
, “
Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle
,”
J. Clin. Invest.
100
,
2486
2500
(
1997
).
76.
T. J.
Wu
,
M.
Yashima
,
F.
Xie
,
C. A.
Athill
,
Y. H.
Kim
,
M. C.
Fishbein
,
Z.
Qu
,
A.
Garfinkel
,
J. N.
Weiss
,
H. S.
Karagueuzian
, and
P. S.
Chen
, “
Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry
,”
Circ. Res.
83
,
448
462
(
1998
).
77.
A.
Garfinkel
,
P. S.
Chen
,
D. O.
Walter
,
H. S.
Karagueuzian
,
B.
Kogan
,
S. J.
Evans
,
M.
Karpoukhin
,
C.
Hwang
,
T.
Uchida
,
M.
Gotoh
,
O.
Nwasokwa
, and
P.
Sager
, “
Quasiperiodicity and chaos in cardiac fibrillation
,”
J. Clin. Invest.
99
,
305
314
(
1997
).
78.
C.
Henze
,
E.
Lugosi
, and
A. T.
Winfree
, “
Helical organizing centers in excitable media
,”
Can. J. Phys.
68
,
683
710
(
1989
).
79.
H.
Zhang
and
A. V.
Holden
, “
Chaotic meander of spiral waves in the Fitzhugh–Nagumo system
,”
Chaos, Solitons Fractals
5
,
661
670
(
1995
).
80.
D.
Barkley
,
M.
Kness
, and
L. S.
Tuckerman
, “
Spiral wave dynamics in a simple model of excitable media: The transition from simple to compound rotation
,”
Phys. Rev. A
42
,
2489
2492
(
1990
).
81.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
82.
W.
Jahnke
,
W. E.
Skaggs
, and
A. T.
Winfree
, “
Chemical vortex dynamics in the Belousov–Zhabotinsky reaction and in the two-variable Oregonator model
,”
J. Phys. Chem.
93
,
740
749
(
1989
).
83.
A. N.
Iyer
and
R.
Gray
, “
An experimentalist’s approach to accurate localization of phase singularities during reentry
,”
Ann. Biomed. Eng.
29
,
47
59
(
2001
).
84.
R. A. Gray (private communication).
85.
J. Beaumont, N. Davidenko, A. Goodwin, J. M. Davidenko, and J. Jalife, “Dynamics of cardiac excitation during vortex-like reentry” (unpublished).
86.
F.
Fenton
and
A.
Karma
, “
Fiber-rotation-induced vortex turbulence in thick myocardium
,”
Phys. Rev. Lett.
81
,
481
484
(
1998
).
87.
F. Fenton, “Theoretical investigation of spiral and scroll wave instabilities underlying cardiac fibrillation,” Ph.D. thesis, Northeastern University, Boston, MA, 1999.
88.
I. Banville and R. Gray “Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias” (unpublished).
89.
M.
Courtemanche
and
A. T.
Winfree
, “
Re-entrant rotating waves in a Beeler–Reuter based model of two-dimensional cardiac electrical activity
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
431
444
(
1991
).
90.
M. G.
Fishler
and
N. V.
Thakor
, “
A massively parallel computer model of propagation through a two-dimensional cardiac syncytium
,”
Pacing Clin. Electrophysiol.
14
,
1694
1699
(
1991
).
91.
A. V.
Holden
and
A. V.
Panfilov
, “
Spatiotemporal chaos in a model of cardiac electrical activity
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
219
225
(
1991
).
92.
G. W.
Beeler
and
H.
Reuter
, “
Reconstruction of the action potential of ventricular myocardial fibres
,”
J. Physiol. (London)
268
,
177
210
(
1977
).
93.
J. B.
Nolasco
and
R. W.
Dahlen
, “
A graphic method for the study of alternation of cardiac action potentials
,”
J. Appl. Physiol.
25
,
191
196
(
1968
).
94.
M. R.
Guevara
,
G.
Ward
,
A.
Shrier
, and
L.
Glass
, “Electrical alternans and period doubling bifurcations,” Comput. Cardiol. 167–170 (1984).
95.
A.
Karma
, “
Spiral breakup in model equations of action potential propagation in cardiac tissue
,”
Phys. Rev. Lett.
71
,
1103
1106
(
1993
).
96.
F. H.
Fenton
,
E. M.
Cherry
,
H. M.
Hastings
, and
S. J.
Evans
, “
Real-time simulations of excitable media: JAVA as a scientific language and as a wrapper for C and FORTRAN programs
,”
BioSystems
64
,
73
96
(
2002
), with applets in http://arrhythmia.hofstra.edu.
97.
J. J.
Fox
,
M. L.
Riccio
,
F.
Hua
,
E.
Bodenschatz
, and
R. F.
Gilmour
, Jr.
, “
Spatiotemporal transition to conduction block in canine ventricle
,”
Circ. Res.
90
,
289
296
(
2002
).
98.
M.
Courtemanche
,
J. P.
Keener
, and
L.
Glass
, “
A delay equation representation of pulse circulation in a ring in excitable media
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
56
,
119
142
(
1996
).
99.
F. H. Fenton, A. Karma, H. M. Hastings, and S. J. Evans, “Transition from ventricular tachycardia to ventricular fibrillation as a function of tissue characteristics,” IEEE Chicago 2000, World Congress on Medical Physics and Biomedical Engineering, CD-ROM, Paper no. 5617–90379 (2000).
100.
M. C.
Strain
and
H. S.
Greenside
, “
Size-dependent transition to high-dimensional chaotic dynamics in a two-dimensional excitable medium
,”
Phys. Rev. Lett.
80
,
2306
2309
(
1998
).
101.
D.
Noble
, “
A modification of the Hodgkin–Huxley equations application to Purkinje fibre action and pace-maker potentials
,”
J. Physiol. (London)
160
,
317
352
(
1962
).
102.
H.
Zhang
and
N.
Patel
, “
Spiral wave breakdown in an excitable medium model of cardiac tissue
,”
Chaos, Solitons Fractals
5
,
635
643
(
1995
).
103.
C. H.
Luo
and
Y.
Rudy
, “
A model of the ventricular cardiac action potential: Depolarization, repolarization, and their interaction
,”
Circ. Res.
68
,
1501
1526
(
1991
).
104.
Z.
Qu
,
J. N.
Weiss
, and
A.
Garfinkel
, “
Cardiac electrical restitution properties and stability of reentrant spiral waves: A simulation study
,”
Am. J. Physiol.
276
,
H269
H283
(
1999
).
105.
Z.
Qu
,
A.
Garfinkel
,
P. S.
Chen
, and
J. N.
Weiss
, “
Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue
,”
Circulation
102
,
1664
1670
(
2000
).
106.
L. H.
Frame
and
M. B.
Simson
, “
Oscillations of conduction, action potential duration, and refractoriness: A mechanism for spontaneous termination of reentrant tachycardias
,”
Circulation
78
,
1277
1287
(
1988
).
107.
J. M.
Pastore
,
S. D.
Girouard
,
K. R.
Laurita
,
F. G.
Akar
, and
D. S.
Rosenbaum
, “
Mechanism linking T-wave alternans to the genesis of cardiac fibrillation
,”
Circ. Res.
99
,
1385
1394
(
1999
).
108.
J. M.
Pastore
and
D. S.
Rosenbaum
, “
Role of structural barriers in the mechanism of alternans-induced reentry
,”
Circ. Res.
87
,
1157
1163
(
2000
).
109.
D. S.
Rosenbaum
,
L. E.
Jackson
,
J. M.
Smith
,
H.
Garan
,
J. N.
Ruskin
, and
R. J.
Cohen
, “
Electrical alternans and vulnerability to ventricular arrhythmias
,”
N. Engl. J. Med.
330
,
235
241
(
1994
).
110.
F.
Fenton
, “
Numerical simulations of cardiac dynamics: What can we learn from simple and complex models?
Comput. Cardiol.
27
,
251
254
(
2000
).
111.
B.
Echebarria
and
A.
Karma
, “
Instability and spatiotemporal dynamics of alternans in paced cardiac tissue
,”
Phys. Rev. Lett.
88
,
208101
(
2002
).
112.
P.
Comtois
and
A.
Vinet
, “
Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes
,”
Phys. Rev. E
60
,
4619
4628
(
1999
).
113.
V. G.
Fast
and
A. G.
Kleber
, “
Role of wave front curvature in propagation of cardiac impulse
,”
Cardiovasc. Res.
33
,
258
271
(
1997
).
114.
J. P.
Keener
, “
An eikonal-curvature equation for action potential propagation in myocardium
,”
J. Math. Biol.
29
,
629
651
(
1991
).
115.
B.
Echebarrria
and
A.
Karma
, “
Control of alternans in spatially extended cardiac tissue
,”
Chaos
12
,
923
930
(
2002
).
116.
M.
Bär
and
M.
Or-Guil
, “
Alternative scenarios of spiral wave breakup in reaction-diffusion model with excitable and oscillatory dynamics
,”
Phys. Rev. Lett.
82
,
1160
1163
(
1999
).
117.
J. J.
Fox
,
J. L.
McHarg
, and
R. F.
Gilmour
Jr.
, “
Ionic mechanism of electrical alternans
,”
Am. J. Physiol.
282
,
H516
H530
(
2002
).
118.
W. J.
Rappel
,
F.
Fenton
, and
A.
Karma
, “
Spatiotemporal control of wave instabilities in cardiac tissue
,”
Phys. Rev. Lett.
83
,
456
459
(
1999
).
119.
G. M.
Hall
,
S.
Bahar
, and
D. J.
Gauthier
, “
Prevelence of rate-dependent behavior in cardiac muscle
,”
Phys. Rev. Lett.
82
,
2995
2998
(
1999
).
120.
P.
Lorente
and
J.
Davidenko
, “
Hysteresis phenomena in excitable cardiac tissue
,”
Ann. N.Y. Acad. Sci.
591
,
109
127
(
1990
).
121.
R. A.
Oliver
,
G. M.
Hall
,
S.
Bahar
,
W.
Krassowska
,
P. D.
Wolf
,
E. G.
Dixon-Tulloch
, and
D. J.
Gauthier
, “
Existence of bistability and correlation with arrhythmogenesis in paced sheep atria
,”
J. Cardiovasc. Electrophysiol.
11
,
797
805
(
2000
).
122.
P.
Lorente
,
C.
Delgado
,
M.
Delmar
,
D.
Henzel
, and
J.
Jalife
, “
Hysteresis in excitability of isolated guinea pig ventricular myocytes
,”
Circ. Res.
69
,
1301
1315
(
1991
).
123.
A. R.
Yehia
,
D.
Jeandupeux
,
F.
Alonso
, and
M. R.
Guevara
, “
Hystersis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells
,”
Chaos
9
,
916
931
(
1999
).
124.
S. Bahar, “Reentrant waves induced by local bistabilities in a cardiac model,” in Proceedings of the Fifth Experimental Chaos Conference, edited by M. Ding, W. L. Ditto, L. M. Pecora, and M. L. Spano (World Scientific, Singapore, 2001), pp. 215–222.
125.
V. G.
Fast
and
A. M.
Pertsov
, “
Drift of a vortex in the myocardium
,”
Biophysics (Engl. Transl.)
35
,
489
494
(
1990
).
126.
O.
Steinbock
,
J.
Schütze
, and
S. C.
Müller
, “
Electric-field-induced drift and deformation of spiral waves in an excitable medium
,”
Phys. Rev. Lett.
68
,
248
251
(
1992
).
127.
L. J.
Leon
,
F. A.
Roberge
, and
A.
Vinet
, “
Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wavelength on the reentry characteristics
,”
Ann. Biomed. Eng.
22
,
592
609
(
1994
).
128.
A. M.
Pertsov
,
J. M.
Davidenko
,
R.
Salomonsz
,
W. T.
Baxter
, and
J.
Jalife
, “
Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle
,”
Circ. Res.
72
,
631
650
(
1993
).
129.
M.
Bär
,
M.
Hildebrand
,
M.
Eiswirth
,
M.
Falcke
,
H.
Engel
, and
M.
Neufeld
, “
Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities
,”
Chaos
4
,
499
508
(
1994
).
130.
W. J.
Rappel
, “
Filament instability and rotational tissue anisotropy: A numerical study using detailed cardiac models
,”
Chaos
11
,
71
80
(
2001
).
131.
P.
Szigligeti
,
T.
Banyasz
,
J.
Magyar
,
G. Y.
Szigeti
,
Z.
Papp
,
A.
Varro
, and
P. P.
Nanasi
, “
Intracellular calcium and electrical restitution in mammalian cardiac cells
,”
Acta Physiol. Scand.
163
,
139
147
(
1998
).
132.
S. M.
Horner
,
D. J.
Dick
,
C. F.
Murphy
, and
M. J.
Lab
, “
Cycle length dependence of the electrophysiological effects of increased load on the myocardium
,”
Circulation
94
,
1131
1136
(
1996
).
133.
M. R.
Franz
,
C. D.
Swerdlow
,
L. B.
Liem
, and
J.
Schaefer
, “
Cycle length dependence of human action potential duration in vivo
,”
J. Clin. Invest.
82
,
972
979
(
1988
).
134.
M.
Watanabe
,
N. F.
Otani
, and
R. F.
Gilmour
, “
Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium
,”
Circ. Res.
76
,
915
921
(
1995
).
135.
Z.
Qu
,
J.
Weiss
, and
A.
Garfinkel
, “
Spatiotemporal chaos in a simulated rings of cardiac cells
,”
Phys. Rev. Lett.
78
,
1387
1390
(
1997
).
136.
Y.
Kobayashi
,
W.
Peters
,
S. S.
Khan
,
W. J.
Mandel
, and
H. S.
Karagueuzian
, “
Cellular mechanisms of differential action potential duration restitution in canine ventricular muscle cells during single versus double premature stimuli
,”
Circulation
86
,
955
967
(
1992
).
137.
A. V.
Panfilov
and
C. W.
Zemlin
, “
Wave propagation in an excitable medium with a negatively sloped restitution curve
,”
Chaos
12
,
800
806
(
2002
).
138.
D. R.
Chialvo
,
D. C.
Michaels
, and
J.
Jalife
, “
Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers
,”
Circ. Res.
66
,
525
545
(
1990
).
139.
J. W.
Buchanan
, Jr.
,
T.
Saito
, and
L. S.
Gettes
, “
The effects of antiarrhythmic drugs, stimulation frequency, and potassium-induced resting membrane potential changes on conduction velocity and dV/dt max in guinea pig myocardium
,”
Circ. Res.
56
,
696
703
(
1985
).
140.
K.
Endresen
,
J. P.
Amlie
,
K.
Forfang
,
S.
Simonsen
, and
O.
Jensen
, “
Monophasic action potentials in patients with coronary artery disease: Reproducibility and electrical restitution and conduction at different stimulation rates
,”
Cardiovasc. Res.
21
,
696
702
(
1987
).
141.
K.
Endresen
and
J. P.
Amlie
, “
Electrical restitution and conduction intervals of ventricular premature beats in man: Influence of heart rate
,”
Pacing Clin. Electrophysiol.
12
,
1347
1354
(
1989
).
142.
N.
Manz
,
S. C.
Muller
, and
O.
Steinbock
, “
Anomalous dispersion of chemical waves in a homogeneously catalyzed reaction system
,”
J. Phys. Chem. A
104
,
5895
5897
(
2000
).
143.
C. T.
Hamik
,
N.
Manz
, and
O.
Steinbock
, “
Anomalous dispersion and attractive pulse interaction in the 1,4-cyclohexanedione Belousov–Zhabotinsky reaction
,”
J. Phys. Chem. A
105
,
6144
6153
(
2001
).
144.
C. Fisch, “Electrocardiographic manifestations of exit block and supernormal and concealed conduction,” in Cardiac Electrophysiology From Cell to Bedside, 3rd ed., edited by D. P. Zipes and J. Jalife (Saunders, Philadelphia, 2000), pp. 185–690.
145.
J.
Maselko
and
K.
Showalter
, “
Chemical waves on spherical surfaces
,”
Nature (London)
339
,
609
611
(
1989
).
146.
J. M.
Rogers
, “
Wave front fragmentation due to ventricular geometry in a model of the rabbit heart
,”
Chaos
12
,
779
787
(
2002
).
147.
Y. A.
Yermakova
,
V. I.
Krinskii
,
A. V.
Panfilov
, and
A. M.
Pertsov
, “
Interaction of helical and flat periodic autowaves in an active medium
,”
Biophysics (Engl. Transl.)
31
,
348
354
(
1986
).
148.
F. H.
Fenton
,
S. J.
Evans
,
H. M.
Hastings
, and
A.
Karma
, “
Transition from ventricular tachycardia to ventricular fibrillation as a function of tissue characteristics in a computer model
,”
Europace
1
,
D126
(
2000
).
149.
D. M.
Harrild
and
C. S.
Henriquez
, “
A computer model of normal conduction in the human atria
,”
Circ. Res.
87
,
e25
e36
(
2000
).
150.
S. M.
Dillon
,
M. A.
Allessie
,
P. C.
Ursell
, and
A. L.
Wit
, “
Influence of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts
,”
Circ. Res.
63
,
182
206
(
1988
).
151.
K. M.
Kavanagh
,
J. S.
Kabas
,
D. L.
Rollins
,
S. B.
Melnick
,
W. M.
Smith
, and
R. E.
Ideker
, “
High-current stimuli to the spared epicardium of a large infarct induced ventricular tachycardia
,”
Circulation
85
,
680
698
(
1992
).
152.
D. P.
Zipes
,
J.
Fischer
,
R. M.
King
,
A.
Nicoll
, and
W. W.
Jolly
, “
Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium
,”
Am. J. Cardiol.
36
,
37
44
(
1975
).
153.
M. A.
Allessie
,
M. J.
Schalij
,
C. J.
Kirchoff
,
L.
Boersma
,
M.
Huybers
, and
J.
Hollen
, “
Experimental electrophysiology and arrhythmogenicity, anisotropy and ventricular tachycardia
,”
Eur. Heart J.
10
,
2
8
(
1989
).
154.
G.
Breithardt
,
M.
Borggrefe
,
A.
Martinez-Rubio
, and
T.
Budde
, “
Pathophysiological mechanisms of ventricular tachyarrhythmias
,”
Eur. Heart J.
10
,
9
18
(
1989
).
155.
M. J.
Schalij
,
W. J.
Lammers
,
P. L.
Rensma
, and
M. A.
Allessie
, “
Anisotropic conduction and reentry in perfused epicardium of rabbit left ventricle
,”
Am. J. Physiol.
263
,
H1466
H1478
(
1992
).
156.
A. T.
Winfree
, “
Electrical turbulence in three-dimensional heart muscle
,”
Science
266
,
1003
1006
(
1994
).
157.
A. T. Winfree, “Rotors, fibrillation, and dimensionality,” in Computational Biology of the Heart, edited by A. V. Panfilov and A. V. Holden (Wiley, Chichester, 1997), pp. 101–135.
158.
D.
Vaidya
,
G. E.
Morley
,
F. H.
Samie
, and
J.
Jalife
, “
Reentry and fibrillation in the mouse heart, a challenge to the critical mass hypothesis
,”
Circ. Res.
85
,
174
181
(
1999
).
159.
A. V.
Panfilov
and
P.
Hogeweg
, “
Scroll breakup in a three-dimensional excitable medium
,”
Phys. Rev. E
53
,
1740
1743
(
1996
).
160.
A. T.
Winfree
, “
Scroll-shaped waves of chemical activity in three dimensions
,”
Science
181
,
937
938
(
1973
).
161.
P. S.
Chen
,
P. D.
Wolf
,
E. G.
Dixon
,
N. D.
Danieley
,
D. W.
Frazier
,
W. M.
Smith
, and
R. E.
Ideker
, “
Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs
,”
Circ. Res.
62
,
1191
1209
(
1988
).
162.
D. W.
Frazier
,
P. D.
Wolf
,
J. M.
Wharton
,
A. S. L.
Tang
,
W. M.
Smith
, and
R. E.
Ideker
, “
Stimulus-induced critical point: mechanism for the electrical initiation of reentry in normal canine myocardium
,”
J. Clin. Invest.
83
,
1039
1052
(
1989
).
163.
M.
Vinson
,
A.
Pertsov
, and
J.
Jalife
, “
Anchoring of vortex filaments in 3D excitable media
,”
Physica D
72
,
119
134
(
1993
).
164.
A. S.
Mikhailov
,
A. V.
Panfilov
, and
A. N.
Rudenko
, “
Twisted scroll waves in active three-dimensional media
,”
Phys. Lett. A
109
,
246
250
(
1985
).
165.
A. M.
Pertsov
,
R. R.
Aliev
, and
V. I.
Kriinsky
, “
Three-dimensional twisted vortices in an excitable chemical medium
,”
Nature (London)
345
,
419
421
(
1990
).
166.
B. J.
Welsh
,
J.
Gomatam
, and
A. E.
Burgess
, “
Three-dimensional chemical waves in the Belousov–Zhabotinskii reaction
,”
Nature (London)
304
,
611
614
(
1983
).
167.
M.
Vinson
,
S.
Mironov
,
S.
Mulvey
, and
A.
Pertsov
, “
Control of spatial orientation and lifetime of scroll rings in excitable media
,”
Nature (London)
386
,
477
480
(
1997
).
168.
A. T.
Winfree
, “
Persistent tangled vortex rings in generic excitable media
,”
Nature (London)
371
,
233
236
(
1994
).
169.
A.
Malevanets
and
R.
Kapral
, “
Links, knots, and knotted labyrinths in bistable systems
,”
Phys. Rev. Lett.
77
,
767
770
(
1996
).
170.
A. V.
Panfilov
and
A. N.
Rudenko
, “
Two regimes of the scroll ring drift in the three-dimensional active media
,”
Physica D
28
,
215
218
(
1987
).
171.
A. V.
Panfilov
and
A. V.
Holden
, “
Computer simulation of re-entry sources in myocardium in two and three dimensions
,”
J. Theor. Biol.
161
,
271
285
(
1993
).
172.
P. J.
Nandapurkar
and
A. T.
Winfree
, “
Dynamical stability of untwisted scroll rings in excitable media
,”
Physica D
35
,
277
288
(
1998
).
173.
M.
Courtemanche
,
W.
Skaggs
, and
A. T.
Winfree
, “
Stable 3-dimensional action-potential circulation in the FitzHugh–Nagumo model
,”
Physica D
41
,
173
182
(
1990
).
174.
Y. A.
Yermakova
and
A. M.
Pertsov
, “
Interaction of rotating spiral waves with a boundary
,”
Biophysics (Engl. Transl.)
31
,
932
940
(
1986
).
175.
J. P.
Keener
, “
The dynamics of three-dimensional scroll waves in excitable media
,”
Physica D
31
,
269
276
(
1988
).
176.
J. P.
Keener
and
J. J.
Tyson
, “
The dynamics of scroll waves in excitable media
,”
SIAM Rev.
34
,
1
39
(
1992
).
177.
C. E.
Thomas
, “
The muscular architecture of the ventricles of hog and dog hearts
,”
Am. J. Anat.
101
,
17
57
(
1957
).
178.
D. Streeter, “Gross morphology and fiber geometry in the heart,” in Handbook of Physiology, edited by R. Berne (American Physiological Society, Bethesda, MD, 1979), Vol 1, Sec. 2, pp. 61–112.
179.
C. S.
Peskin
, “
Fiber architecture of the left ventricular wall: An asymptotic analysis
,”
Commun. Pure Appl. Math.
42
,
79
113
(
1989
).
180.
D. D.
Streeter
, Jr.
,
H. M.
Spotnitz
,
D. P.
Patel
,
J.
Ross
, and
E. H.
Sonnenblick
, “
Fiber orientation in the canine left ventricle during diastole and systole
,”
Circ. Res.
24
,
339
347
(
1969
).
181.
S.
Mironov
,
M.
Vinson
,
S.
Mulvey
, and
A.
Pertsov
, “
Destabilization of three-dimensional rotating chemical waves in an inhomogeneous BZ reaction
,”
J. Physiol. (London)
100
,
1975
1983
(
1996
).
182.
M. S.
Spach
,
W. T.
Miller
III
,
D. B.
Geselowitz
,
R. C.
Barr
,
J.
Kootsey
, and
E. A.
Johnson
, “
The discontinuous nature of propagation in normal canine cardiac muscle: Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents
,”
Circ. Res.
48
,
39
54
(
1981
).
183.
L.
Clerc
, “
Directional differences of impulse spread in trabecular muscled from mammalian heart
,”
J. Physiol. (London)
255
,
334
346
(
1976
).
184.
L. J.
Leon
and
F. A.
Roberge
, “
Directional characteristics of action potential propagation in cardiac muscle
,”
Circ. Res.
69
,
378
395
(
1991
).
185.
M. S. Spach and J. F. Heidlage, “A multidimensional model of cellular effects on the spread of electrotonic currents and on propagating action potentials,” in High-Performance Computing in Biomedical Research, edited by T. C. Pilkington, B. Loftis, J. F. Thompson, S. L.-Y. Woo, T. C. Palmer, and T. F. Budinger (CRC Press, Boca Raton, FL, 1993), pp. 289–317.
186.
A. G.
Kleber
,
C. B.
Riegger
, and
M. J.
Janse
, “
Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle
,”
Circ. Res.
61
,
271
279
(
1987
).
187.
J. R.
Harper
,
T. A.
Johnson
,
C. L.
Engle
,
D. G.
Martin
,
W.
Fleet
, and
L. S.
Gettes
, “
Effect of rate changes in conduction velocity and extracullular potassium concentration during acute ischemia in the in situ pig heart
,”
J. Cardiovasc. Electrophysiol.
4
,
661
671
(
1993
).
188.
G.
Bub
,
A.
Shrier
, and
L.
Glass
, “
Spiral wave generation in heterogeneous excitable media
,”
Phys. Rev. Lett.
88
,
058101
(
2002
).
189.
A. V.
Panfilov
and
J. P.
Keener
, “
Generation of reentry in anisotropic myocardium
,”
J. Cardiovasc. Electrophysiol.
4
,
412
421
(
1993
).
190.
J. P.
Keener
, “
Propagation and its failure in coupled systems of discrete excitable cells
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
47
,
556
572
(
1987
).
191.
J. P.
Keener
, “
On the formation of circulating patterns of excitation in anisotropic excitable media
,”
J. Math. Biol.
26
,
41
56
(
1988
).
192.
J. P.
Keener
, “
The effects of discrete gap junction coupling on propagation in myocardium
,”
J. Theor. Biol.
148
,
49
82
(
1991
).
193.
A. R. A.
Anderson
and
B. D.
Sleeman
, “
Wave front propagation and its failure in coupled systems of discrete bistable cells modelled by Fitzhugh–Nagumo dynamics
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
63
74
(
1995
).
194.
M. L.
Riccio
,
M. L.
Koller
, and
R. F.
Gilmour
, Jr.
, “
Electrical restitution and spatiotemporal organization during ventricular fibrillation
,”
Circ. Res.
84
,
955
963
(
1999
).
195.
C.
Omichi
,
S.
Zhou
,
M. H.
Lee
,
A.
Naik
,
C. M.
Chang
,
A.
Garfinkel
,
J. N.
Weiss
,
S. F.
Lin
,
H. S.
Karagueuzian
, and
P. S.
Chen
, “
Effects of amiodarone on wave front dynamics during ventricular fibrillation in isolated swine right ventricle
,”
Am. J. Physiol.
282
,
H1063
H1070
(
2002
).
196.
M. C. E. F.
Wijffels
,
C. J. H. J.
Kirchhof
,
R.
Dorland
, and
M. A.
Allessie
, “
Atrial fibrillation begets atrial fibrillation
,”
Circulation
92
,
1954
1968
(
1995
).
197.
S.
Nattel
,
D.
Li
, and
L.
Yue
, “
Basic mechanisms of atrial fibrillation—Very new insights into very old ideas
,”
Annu. Rev. Physiol.
62
,
51
77
(
2000
).
198.
T.
Watanabe
,
P. M.
Rautaharju
, and
T. F.
McDonald
, “
Ventricular action potentials, ventricular extracullular potentials, and the ECG of guinea pig
,”
Circ. Res.
57
,
362
373
(
1985
).
199.
R. F.
Gilmour
, Jr.
,
N. F.
Ontani
, and
M. A.
Watanabe
, “
Memory and complex dynamics in cardiac Purkinje fibers
,”
Am. J. Physiol.
272
,
H1826
H1832
(
1997
).
200.
T. J.
Hund
and
Y.
Rudy
, “
Determinants of excitability in cardiac myocytes: Mechanistic investigation of memory effect
,”
Biophys. J.
79
,
3095
3104
(
2000
).
201.
M. A.
Watanabe
and
M. L.
Koller
, “
Mathematical analysis of dynamics of cardiac memory and accommodation: Theory and experiment
,”
Am. J. Physiol.
282
,
H1534
H1547
(
2002
).
202.
V.
Elharrar
and
B.
Surawicz
, “
Cycle length effect on restitution of action potential duration in dog cardiac fibers
,”
Am. J. Physiol.
244
,
H782
H792
(
1983
).
203.
M. L.
Koller
,
M. R.
Riccio
, and
R. F.
Gilmour
, Jr.
, “
Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation
,”
Am. J. Physiol.
275
,
H1635
H1642
(
1998
).
204.
A. V.
Zaitsev
,
O.
Berenfeld
,
S. F.
Mironov
,
J.
Jalife
, and
A. M.
Pertsov
, “
Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall in the sheep heart
,”
Circ. Res.
86
,
408
417
(
2000
).
205.
J. L. R. M.
Smeets
,
M. A.
Allessie
,
W. J. E. P.
Lammers
,
F. I. M.
Bonke
, and
J.
Hollen
, “
The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium
,”
Circ. Res.
58
,
96
108
(
1986
).
206.
M. J.
Reiter
,
M.
Landers
,
Z.
Zetelaki
,
C. J. H.
Kirchhof
, and
M. A.
Allessie
, “
Electrophysiological effects of acute dilatation in the isolated rabbit heart
,”
Circulation
96
,
4050
4056
(
1997
).
207.
Y.
Hiramatsu
,
J. W.
Buchanan
, Jr.
,
S. B.
Kinsley
,
G. G.
Koch
,
S.
Kropp
, and
L. S.
Gettes
, “
Influence of rate-dependent cellular uncoupling on conduction change during simulated ischemia in guinea pig papillary muscles: Effect of verapamil
,”
Circ. Res.
65
,
95
102
(
1989
).
208.
B.
Fiedler
and
R. M.
Mantel
, “
Crossover collision of scroll wave filaments
,”
Documenta Math.
5
,
695
731
(
2000
).
209.
D.
Margerit
and
D.
Barkley
, “
Selection of twisted scroll waves in three-dimensional excitable media
,”
Phys. Rev. Lett.
86
,
175
178
(
2001
).
210.
S.
Setayeshgar
and
A. J.
Bernoff
, “
Scroll waves in the presence of slowly varying anisotropy with application to the heart
,”
Phys. Rev. Lett.
88
,
028101
(
2002
).
211.
J. M.
Rogers
and
A. D.
McCulloch
, “
Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation
,”
J. Cardiovasc. Electrophysiol.
5
,
496
509
(
1994
).
212.
R. A.
Gray
,
J.
Jalife
,
A. V.
Panfilov
,
W. T.
Baxter
,
C.
Cabo
,
J. M.
Davidenko
, and
A. M.
Pertsov
, “
Mechanisms of cardiac fibrillation
,”
Science
270
,
1222
12225
(
1995
).
213.
P. M.
Tande
,
E.
Mortensen
, and
H.
Refsum
, “
Rate-dependent differences in dog epi and endocardial monophasic action potential configuration in vivo
,”
Am. J. Physiol.
261
,
H1387
H1391
(
1991
).
214.
E. P.
Anyukhovsky
,
E. A.
Sosunov
, and
M. R.
Rosen
, “
Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium
,”
Circulation
94
,
1981
1988
(
1996
).
215.
C.
Antzelevitch
,
W.
Shimizu
,
G. X.
Yan
,
S.
Sicouri
,
J.
Weissenburger
,
V. V.
Nesterenko
,
A.
Burashnikov
,
J.
Di Diego
,
J.
Saffitz
, and
G. P.
Thomas
, “
The M cell: Its contribution to the ECG and to normal and abnormal electrical function of the heart
,”
J. Cardiovasc. Electrophysiol.
10
,
1124
1152
(
1999
).
216.
A. W.
Cates
and
A. E.
Pollard
, “
A model study of intramural dispersion of action potential duration in the canine pulmonary conus
,”
Ann. Biomed. Eng.
26
,
567
576
(
1998
).
217.
R. C. Penland and C. S. Henriquez, “Impact of transmural structural and ionic heterogeneity on paced beats in the ventricle: A modeling study,” in Einthoven 2002: 100 Years of Electrocardiography, edited by M. J. Schalij, M. J. Janse, A. van Oosterom, H. J. J. Wellens, and E. E. van der Wall (Einthoven Foundation, Netherlands, 2002).
218.
J. Kil, Z. Qu, J. N. Weiss, and A. Garfinkel, “Electrophysiological transmural heterogeneity and scroll wave stability in simulated 3D cardiac tissue” (unpublished).
219.
K. J.
Sampson
and
C. S.
Henriquez
, “
Simulation and prediction of functional block in the presence of structural and ionic heterogeneity
,”
Am. J. Physiol.
281
,
H2597
H2603
(
2001
).
220.
M.
Valderrabano
,
M. H.
Lee
,
T.
Ohara
,
A. C.
Lai
,
M. C.
Fishbein
,
S. F.
Lin
,
H. S.
Karagueuzian
, and
P. S.
Chen
, “
Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles
,”
Circ. Res.
88
,
839
848
(
2001
).
221.
R. A.
Gray
,
A. M.
Pertsov
, and
J.
Jalife
, “
Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart
,”
Circulation
94
,
2649
2661
(
1996
).
222.
F.
Ouyang
,
R.
Cappato
,
S.
Ernst
,
M.
Goya
,
M.
Volkmer
,
J.
Hebe
,
M.
Antz
,
T.
Vogtmann
,
A.
Schaumann
,
P.
Fotuhi
,
M.
Hoffmann-Riem
, and
K.-H.
Kuck
, “
Electroanatomic substrate of idiopathic left ventricular tachycardia: Unidirectional block and macroreentry within the Purkinje network
,”
Circulation
105
,
462
469
(
2002
).
223.
J.
Garcı́a-Ojalvo
and
L.
Schimankshy-Geier
, “
Noise-induced spiral dynamics in excitable media
,”
Europhys. Lett.
47
,
298
303
(
1999
).
224.
F.
Fenton
,
S.
Evans
, and
H.
Hastings
, “
Memory in an excitable medium; A mechanism for spiral wave breakup in the low excitable limit
,”
Phys. Rev. Lett.
83
,
3964
3967
(
1999
).
225.
T. J.
Hund
and
Y.
Rudy
, “
Determinants of excitability in cardiac myocytes: Mechanistic investigation of memory effect
,”
Biophys. J.
79
,
3095
3104
(
2000
).
226.
K. Seongwon, “Excitable systems in motion: Interactions between electrical and mechanical activities of the heart,” Ph.D. thesis, New York University, 1998.
227.
P. C.
Viswanathan
and
Y.
Rudy
, “
Pause induced early afterdepolarizations in the long QT syndrome: A simulation study
,”
Cardiovasc. Res.
42
,
530
542
(
1999
).
228.
G.
Bub
and
A.
Shrier
, “
Propagation through heterogeneous substrates in simple excitable media models
,”
Chaos
12
,
747
753
(
2002
).
229.
A. V.
Panfilov
and
J. P.
Keener
, “
Effects of high frequency stimulation on cardiac tissue with an inexcitable obstacle
,”
J. Theor. Biol.
163
,
439
448
(
1993
).
230.
J. M.
Starobin
,
Y. I.
Zilberter
,
E. M.
Rusnak
, and
C. F.
Starmer
, “
Wavelet formation in excitable cardiac tissue: The role of wavefront obstacle interactions in initiating high-frequency fibrillatory-like arrhythmias
,”
Biophys. J.
70
,
581
594
(
1996
).
231.
C.
Cabo
,
A. M.
Pertsov
,
J. M.
Davidenko
, and
J.
Jalife
, “
Electrical turbulence as a result of the critical curvature for propagation in cardiac tissue
,”
Chaos
8
,
116
126
(
1998
).
232.
H.
Arce
,
A.
Xu
,
H.
Gonzalez
, and
M. R.
Guevara
, “
Alternans and higher-order rhythmas in an ionic model of a sheet of ischemic ventricular muscle
,”
Chaos
10
,
411
426
(
2000
).
233.
F. H.
Samie
,
R.
Mandapti
,
R. A.
Gray
,
Y.
Watanabe
,
C.
Zuur
,
J.
Beaumont
, and
J.
Jalife
, “
A mechanism of transition from ventricular fibrillation to tachycardia: Effect of calcium channel blockade on the dynamics of rotating waves
,”
Circ. Res.
86
,
684
691
(
2000
).
234.
F. J.
Samie
and
J.
Jalife
, “
Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart
,”
Cardiovasc. Res.
50
,
242
250
(
2001
).
235.
M.
Courtemanche
,
R. J.
Ramirez
, and
S.
Nattel
, “
Ionic mechanisms underlying human atrial action potential properties: insights form a mathematical model
,”
Am. J. Phys.
275
,
H301
H321
(
1998
).
236.
See EPAPS Document No. E-CHAOEH-12-039203 for movies showing breakup mechanisms.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.