Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1996 Jan;50(1):28-32.

In vivo antioxidant effect of green and black tea in man

Affiliations
  • PMID: 8617188
Clinical Trial

In vivo antioxidant effect of green and black tea in man

M Serafini et al. Eur J Clin Nutr. 1996 Jan.

Abstract

Objective: Evaluation of the vitro antioxidant activity of green and black tea, their in vivo effect on plasma antioxidant potential in man and the effect of milk addition.

Design: The antioxidant activity of the tea, with and without milk, was tested in vitro by measuring the length of the peroxyl radical induced lag-phase. The in vivo activity was tested on two groups of five healthy adults. Each group ingested 300 ml of either black or green tea, after overnight fast. The experiment was repeated on a separate day, adding 100 ml whole milk to the tea (ratio 1:4 ). Five subjects acted as controls. The human plasma antioxidant capacity (TRAP) was measured before and 30, 50 and 80 min from the ingestion of tea.

Results: Both teas inhibited the in vitro peroxidation in a dose-dependent manner. Green tea was sixfold more potent than black tea. The addition of milk to either tea did not appreciably modify their in vitro antioxidant potential. In vivo, the ingestion of tea produced a significant increase of TRAP (P <0.05), similar in both teas, which peaked at 30-50 min. When tea was consumed with milk, their in vivo activity was totally inhibited.

Conclusions: The paper shows that tea possesses a strong antioxidant activity in vitro which is believed to be exerted by its polyphenols moiety. It also provides compelling evidence that tea has also a potent in vivo activity in man. The promptness of the in vivo response suggests that the absorption of the bioactive components of tea takes place in the upper part of the gastrointestinal system. The inhibition of this effect by milk is thought to be due to the complexation of tea polyphenols by milk proteins. These findings might help to clarify the putative role of dietary poly- phenols in modulating oxidative stress in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-